GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester -IV

Course Title: Fundamentals of Machine Learning

(Course Code: 4341603)

Diploma programme in which this course is offered	Semester in which offered
Information Technology	4 th semester

1. RATIONALE

Machine learning focuses on the use of data and algorithms to perform learning similar to the way human learns. To solve recent problems in IT domain it is important to understand the need of machine learning and apply machine learning methods in efficient ways. Every student of Information Technology must therefore understand the blue prints of machine learning approaches and must be able to apply learning methods on available datasets. This course will help students to build up core competencies in understanding machine learning approaches and students will be able to design and train machine learning modes for various use cases.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching-learning experiences:

• Develop appropriate machine learning algorithms for problem solving

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge, and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

The student will develop underpinning knowledge, adequate programming skills of competency for implementing various applications using python programming language to attain the following course outcomes.

- a) To understand the need of machine learning for various problem solving.
- b) Prepare machine leaning model and learning the evaluation methods.
- c) Evaluate various supervised learning algorithms using appropriate dataset.
- d) Evaluate various unsupervised learning algorithms using appropriate dataset.
- e) To understand the use of various existing machine learning libraries.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits					E	kamination S	Scheme	
(In	Hours	5)	(L+1/2+P/2)	Theory	y Marks	Practical Marks		Total Marks
L	т	Р	С	СА	ESE	СА	ESE	
3	-	4	5	30	70	25	25	150

GTU - COGC-2021 Curriculum

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. . . . These PrOs need to be attained to achieve the COs.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Numerical Computing with Python (NumPy, Matplotlib)	I	04
2	Introduction to Pandas for data import and export (Excel, CSV etc.)	VI	04
3	Basic Introduction to Scikit learn	VI	04
4	Implement the Find-S concept learning algorithm that finds the most specific hypothesis that is consistent with the given training data. Conditions: Hypothesis can only be conjunction (AND) of literals. Literals are either attributes or their negations.	Ξ	06
5	Import Pima Indian diabetes data Apply select K best and chi2 for feature selection Identify the best features	II	04
6	Write a program to learn a decision tree and use it to predict class labels of test data Training and test data will be explicitly provided by instructor. Tree pruning should not be performed.	III	04
7	ML Project Use the following dataset as music.csv	III	06

	age	gender	genre			
	20	1	HipHop			
	23	1	HipHop			
	25	1	HipHop			
	26	1	Jazz			
	29	1	Jazz			
	30	1	Jazz			
	31	1	Classical			
	33	1	Classical			
	37	1	Classical			
	20	0	Dance			
	21	0	Dance			
	25	0	Dance			
	26	0	Acoustic			
	27	0	Acoustic			
	30	0	Acoustic			
	31	0	Classical			
	34	0	Classical			
	35	0	Classical			
	a. Store fi	le as musi	ic.csv and i	mport it to python using pandas		
	b. Prepare	e the data	by splitting	g data in input(age .gender) and		
	output(ge	enre) data	set	5		
	c Use der	rision tree	e model fro	m sklearn to predict the genre of various		
		neonle (Fy A male c	of age 21 likes hinhon whereas female of		
		os danco)		age 21 likes hiphop whereas temale of		
	d Calcula	to the sec	wraav of th	a madal		
	u. Calcula		uracy of th	e model.		
	e. vary tra	aining and	i test size to	o check different accuracy values model		
	achieves.					
8	Write a pi	rogram to	use a K-ne	arest neighbor it to predict class labels of	IV	04
0	test data.	Training	and test da	ta must be provided explicitly.		
	Import vg	sales.csv	from kaggle	e platform.	IV	04
	a Find ro	ws and co	dumns in d	ataset		01
9	h Find ha	sic inform	nation rega	rding dataset using describe command		
	C. Find va	lues using	values cor	nmand.		
			,			
	Project or	n regressio	on		IV	06
	ä	a. Impor	t home_da	ta.csv on kaggle using pandas		
	ł	o. Under	rstand data	by running head ,info and describe		
10		comm	nand			
	(c. Plot th	ne price of l	house with respect to area using matplotlib		
		library	/			
	C	d. Apply	linear regr	ession model to predict the price of house		
	Write a n	rogram to	cluster a s	et of points using K-means	V	04
11	Training a	ind test da	ata must be	e provided explicitly.	•	01
				· ·		
	Import Iri	s dataset			V	06
		a. Findr	rows and co	olumns using shape command		
12		b. Print	tirst 30 inst	ances using head command		
		c. Find c	out the data	a instances in each class.(use groupby and		
		size)				

 e. Plot the univariate graphs(box plot and histograms) f. Plot the multivariate plot(scatter matrix) g. Split data to train model by 80% data values h. Apply K-NN and k means clustering to check accuracy and decide which is better. 	
Total	56

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Using the existing python libraries through Python Jupyter notebook.	25
2	Use python to read dataset and modify as per requirement.	20
3	Selecting appropriate machine learning method.	25
4	Train and test the model by importing existing data set.	10
5	Making predictions and improve learning parameters as well as improve accuracy.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer system with operating system: Windows 7 or higher Ver., macOS, and Linux, with 4GB or higher RAM, Python versions: 2.7.X, 3.6.X	All
2	Python IDEs and Code Editors Open Source : Anaconda Navigator	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a Data scientist.
- b) Follow ethical practices.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

9. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher-level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at Application and above level)	Topics and Sub-topics
Unit – I Introduction to machine learning	1.1 Describe basic concept of machine learning and its applications	1.1.1 Overview of Human Learning and Machine Learning1.1.2 Types of Machine Learning1.1.3 Applications of Machine Learning1.1.4 Tools and Technology forMachine Learning
Unit – II Preparing to Model	2.1 Describe different types of Machine learning Activities.2.2 Explain types of data and data preprocessing.	 2.1.1 Machine Learning activities 2.1.2 Types of data in Machine Learning 2.1.3 Structures of data 2.1.4 Data quality and remediation 2.1.5 Data Pre-Processing Dimensionality reduction Feature subset selection
Unit– III Modeling and Evaluation	3.1 selecting a machine learning model3.2 Train the model for supervised learning3.3 Evaluate the prepared model.	 3.1.1 Selecting a Model Predictive/Descriptive 3.2.1 Training a Model for supervised learning: Holdout method K-fold Cross-validation method 3.3.1 Model representation and interpretability 3.3.2 Evaluating performance of a model Confusion Matrix 3.3.3 Improving Performance of a model
Unit– IV Supervised Learning - Classification	 4.1 Describe supervised learning 4.2 Explain classification Algorithms. 4.3 Explain Regression. 	4.1.1 Introduction to supervisedlearning.4.1.2 Classification Model4.1.3 Learning steps

and Regression		 4.2.1 Classification Algorithms k-Nearest Neighbor (kNN) Support Vector Machines 4.3.1Regression Simple linear regression Multiple linear regression Logistic regression 	
Unit– V Unsupervised Learning	5.1 Explain unsupervised learning5.2 Describe Clustering5.3 Describe pattern finding using association rule	 Logistic regression 5.1.1 Supervised vs. Unsupervised Learning 5.1.2 Applications of unsupervised learning 5.2.1 Clustering K-means Clustering algorithm 5.3.1 Finding pattern using Association Rule 	
Unit– VI Python libraries for Machine learning	6.1 Explain the use of existing machine learning python libraries.	6.1.1 Pandas 6.1.2 Numpy 6.1.3 Matplotlib 6.1.4 Scikit-learn	

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

10. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Mar			y Marks
NO.		Hours	R Level	U Level	Α	Total Marks
I	Introduction to machine learning	04	02	04	02	8
II	Preparing to Model	06	02	06	04	12
III	Modeling and Evaluation	08	02	04	06	12
IV	Supervised Learning - Classification and Regression	10	02	04	08	14
V	Unsupervised Learning	08	02	06	04	12
VI	Python libraries for Machine learning	06	04	04	04	12
	Total	42	14	28	28	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from the above table.

11. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Explore different data repositories and register for ML based competitions on platforms like kaggle.
- b) Undertake micro-projects in teams
- c) Give a seminar on any relevant topics.
- d) Collect various sensor data from smart phones and apply machine learning approach.

12. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students for open source python editors.

13. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit a micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- **Project idea 1:** BigMart Sales Prediction: BigMart sales dataset consists of 2013 sales data for 1559 products across 10 different outlets in different cities. The goal of the BigMart sales prediction ML project is to build a regression model to predict the sales of each of 1559 products for the following year in each of the 10 different BigMart outlets.
- **Project idea 2:** Stock Price Prediction using machine learning is the process of predicting the future value of a stock traded on a stock exchange for reaping profits. With multiple factors involved in predicting stock prices, it is challenging to predict stock prices with high accuracy, and this is where machine learning plays a vital role.
- **Project idea 3:** Data from leading music service can be taken to build a better music recommendation system.

14. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Machine Learning_ Step-by-Step Guide To Implement Machine Learning Algorithms with Python.	Rudolph Russell	Rudolph Russell Publications
2	Machine Learning	Saikat Dull, S. Chjandr amouli	Das, Pearson
3	Machine Learning with Python Cookbook_ Practical Solutions from Preprocessing to Deep Learning.	Chris Albon	O'Reilly Media, Inc.

15. SOFTWARE/LEARNING WEBSITES

- a. https://www.geeksforgeeks.org/machine-learning/
- b. https://www.tutorialspoint.com/machine_learning_with_python/index.htm
- c. https://nptel.ac.in/
- d. https://www.coursera.org/
- e. https://scikit-learn.org/

16. PO-COMPETENCY-CO MAPPING

Semester II	Fundamentals of Machine Learning(Course Code: 4341603)						
	POs and PSOs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentatio n &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage ment	PO 7 Life-long learning
<u>Competency</u> Develop a machine learning model to solve real world problems.							
<u>Course Outcomes</u> CO a)To understand the need of machine learning for various problem solving.	3	2	3	2	-	-	3

CO b) Prepare machine leaning model and learning the evaluation methods.	3	2	3	2	-	2	3
CO c) Evaluate various supervised learning algorithms using appropriate dataset	3	3	3	3	-	3	3
CO d)Evaluate various unsupervised learning algorithms using appropriate dataset	3	3	3	3	-	3	3
CO e)To understand the use of various existing machine learning libraries	3	2	3	3	-	-	3

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Sr. No.	Name and Designation	Institute	Email		
1	Mr. Sunil K. Paryani- Head(IT)	Government Polytechnic Ahmedabad	mailtosunil9@gmail.com		
2	Ms. Hiral R. Patel - Lect.(IT)	Government Polytechnic Gandhinagar	hiralit@gmail.com		
3	Mr. Pramod K. Tripathi - Lect.(IT)	Government Polytechnic Gandhinagar	csharp.pramod@gmail.com		

GTU Resource Persons