GOVERNMENT POLYTECHNIC FOR GIRLS , AHMEDABAD

Civil Engineering Department
Shri. P.N. Patel
L.C.E.

Subject:- Estimating, Costing and Valuation Subject Code:- 3350604
Semester:- 5th
Year:2020

- Estimation of Civil Works

- PART-2:
- METHODS OF QUANTITY ESTIMATION/CALCULATION
(I) Center Line method
(II) Long wall and Short wall method(LW\&SW)

For Three and more Room Building plan

- USE OF METHOD : Examples
- TERM WORK -PRACTICE -5

Measurements

METHODS OF TAKING OUT QUANTITIES
 OR Methods of Quantity Estimation

- The quantities like earth work, foundation concrete, brickwork in plinth and super structure etc., can be workout by any of following two methods:
I) Centre Line method.
(with wall junction consideration)
II) Long wall - Short wall method (LW \&SW method) OR

Out to Out and In to In method

I. CENTRE LINE METHOD

- This method is suitable only if the offsets are symmetrical and the building is more or less rectangular in shape. The center line of the building is determined carefully after doing deductions for repeated measurements. This center line acts as length for the complete calculations of the estimate. If the deduction is not cared for the results of estimates may be wrong. All the walls should have the same section.
- This method is suitable for walls of similar cross sections. Here the total center line length is multiplied by breadth and depth of respective item to get the total quantity at a time. When cross walls or partitions or verandah walls join with main all, the center line Length gets reduced by half of breadth for each junction. Such junction or joints are studied carefully while calculating total center line length. The estimates prepared by this method are most accurate and quick.
- For one room, L =Total center length (C/L)
- For more than two type of wall of different thickness, the junction of wall are considered, and net center length is calculated by
- L= Total C/L-1/2 x Width x Total No. of junctions
- L= Total C/L- $1 / 2 \times \mathrm{x}$ x Nj

II. LONG WALL-SHORT WALL METHOD
 OR Out to out \& In to In Method

- In this method, the wall along the length of room is considered to be longwall while the wall perpendicular to long wall is said to be short wall.
- L/W-To get the length of long wall, calculate first the center line lengths of individual walls. Then the length of long wall, (out to out) may be calculated after adding half breadth at each end to its center line length.
$\mathrm{L}=$ center length $+1 / 2$ width at each end
(for each coarse of item of works)
= C.L. + one full width (if same width on both side or at end) on both side or at each end)
- S/W- The length of short wall is measured in to in and may be found by deducting half breadth from its center line length at each end. The length of long wall usually decreases from earth work to brick work in super structure while the short wall increases. These lengths are multiplied by breadth and depth to get quantities.
- L= center length $-1 / 2$ width /breadth at each end(for each coarse of item of works)
= C.L. - one full width/breadth (if width is same)

REMEMBER:

- L/W- Long wall (out-to-out) $=$
c / c length $+1 / 2$ breadth on one side $+1 / 2$ breadth on the other side OR $\mathrm{L}=\mathrm{c} / \mathrm{c}$ length + one breadth. (if breadth / width is same)
- S/W- Short wall length in-to-in =
c/c length $-1 / 2$ breadth on one side $-1 / 2$ breadth on the other side OR
$\mathrm{L}=\mathrm{c} / \mathrm{c}$ length - one breadth. (if breadth / width is same)

Lecturer: Three Room Plan

Ex. 3. Find the quantity of item of work for items of work in sub structure using Center Line method and L/W\& S/W method.
(i) Excavation for foundation (ii) P.C.C. (1:4:8) for footing (iii)Brick masonry (1:6 CM) for substructure
(iv) D.P.C. 10 cm Th. at plinth

Ex. 3 Calculation of center Length:

CENTER LINE METHOD:

$3.2 \mathrm{~m} \mathrm{c} / \mathrm{e}$
Total $\mathrm{C} / \mathrm{L}=$
$4.2 \times 2+3.2 \times 3+$
$5.2+8.4 \times 2$
$=40.0 \mathrm{~m}$.
5.2 m

Xo. of Junctions =4

$$
\downarrow
$$

i
i
i

Ex. 3 Three Room Building Plan
Measurement Sheet:

LAB PRACTICES

EXAMPLES

EX. No. 2. Find the quantity of following items from given drawing.

1. Excavation in foundation
2. P.C.C. (1:3:6) for footing
3. Brick masonry (1:6CM) in sub structure
4. Brick masonry (1:4 CM) in super structure
5. R.C.C. (1:2:4) Slab 12 cm Th.
6. R.C.C. Column with footing up to slab
7. Inside plaster 12 mm Th. in 1:4 CM

Out to Out Length $=7.3+0.3=7.6 \mathrm{~m}$

RCC Beam 0.20×0.3

Total center length: 1. By center line method

- $\mathrm{H}=3 \times 3.5+4 \times 3.8=25.7 \mathrm{~m}$
- $\mathrm{V}=8.6 \times 3=25.8 \mathrm{~m}$ Total $=\mathrm{H}+\mathrm{V}=51.5 \mathrm{~m}$
- No. of junctions= 8
- 2. L/W AND S/W method:
- c/c length for L/W Ll $=8.6 \mathrm{~m}$ No. 3
- " S/W Sl=3.5 No. 3

S2 = 3.8 No. 4

	$\begin{gathered} \text { Sr. } \\ \text { No. } \end{gathered}$	Description	No.	Length L (m)	Breadth B (m)	Depth/ Th. (m)	Qty.	Total Qty.
	4	$\begin{aligned} & \text { DPC at PL } \\ & \mathrm{L}=51.5-1 / 2 \times 0.3 \times 8=50.3 \end{aligned}$	1	50.3	0.3	--	15.09	$\begin{aligned} & 15.09 \\ & \text { Sq.m. } \end{aligned}$
		$\begin{aligned} & 1^{\text {st }} \text { class brick masonry }(1: 4 \mathrm{CM}) \text { in super } \\ & \text { structure } \mathrm{CL}=51.5-3.8-2.3=45.40 \mathrm{~m} \\ & \text { Net } \mathrm{L}=45.4-1 / 2 \times 0.3 \times 6=44.5 \\ & \begin{array}{l} \text { Doors } \mathrm{D} 1 \\ \text { Deduction: } \\ \text { Window w1 } \\ \mathrm{w} 2 \\ \mathrm{~W} 3 \\ \text { ADD-- Parapet wall } \\ \mathrm{CL}=8.6 \times 2+7.3 \times 2 \end{array} \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 3 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 44.5 \\ & 0.9 \\ & 1.5 \\ & 1.2 \\ & 2.0 \\ & 31.8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 2.88 \\ & 2.1 \\ & 1.2 \\ & 1.2 \\ & 1.2 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 38.448 \\ & \\ & \hline 6.039 \\ & 8.586 \end{aligned}$	$\begin{gathered} 41.0 \\ \text { Cu.m. } \end{gathered}$
	6	$\begin{aligned} & \text { RCC slab } 12 \mathrm{~cm} \mathrm{TH} \\ & \mathrm{~L}=8.6+0.3=8.9 \mathrm{~m} \\ & \mathrm{~B}=7.3+0.3=7.6 \mathrm{~m} \end{aligned}$	1	8.9	7.6	0.12	8.117	$\begin{gathered} 8.12 \\ \text { Cu.m. } \end{gathered}$
	2	RCC Beam B1 +B2 size $=0.2 \mathrm{mx} 0.3 \mathrm{~m}$	1	6.7	0.20	0.30	0.402	0.402

Ex. 3 Find the quantity of following item of work,
(i) Excavation for foundation
(ii)P.C.C. (1:4:8) for footing (iii)Brick masonry (1:6 CM) for substructure
(iv) D.P.C. 10 mTh .at plinth
(v) B.B.C.C.(1:5:10) 75 mm Th. in all room

Two different type of wall footing are joining-
(i) 30 cm wall joining 20 cm wall

(ii) 20 cm wall joining 30 cm wall

20 cm wall joining 20 cm wall

Calculation of Center Length:

For30 cm wall:
Total C/L =
$\mathrm{AB}, \mathrm{GI}=(4.0+0.15+0.10) \mathrm{x} 2=8.50$
$\mathrm{BC}=(3.0+0.2) \times 2$

$$
=6.40
$$

$\mathrm{AG}=(4.0+0.3) \mathrm{x} 1$

$$
=4.30
$$

$\mathrm{GF}=(2.0+0.15+0.10) \mathrm{x} 1$

$$
=2.25
$$

Total $=21.45 \mathrm{~m}$
For 20 cm wall:
$\mathrm{BI}, \mathrm{CJ}=(4.0+0.15+0.15) \mathrm{x} 2=8.60$
$\mathrm{JD}, \mathrm{HE}=(2.0+0.15+0.10) \times 2=4.50$
$\mathrm{ED}=5.0+0.10+0.10=5.20$
$E F=2.0+0.15+0.10=2.25$

$$
\text { Total }=20.55 \mathrm{~m}
$$

For 30 cm wall $=$ Net length $=$
Total C/L-1/2x W30x Nj $30-1 / 2 \times \mathrm{W} 20 \times \mathrm{Nj} 20$
For 20 cm wall =
Net length =
Total C/L-1/2 x w20xNj20-1/2 x W30 x Nj30

FIG. EXAMPLE-2 (A)

Wall junctions:

Sr.No.	Joining Wall	Junction with continuous wall having thickness		
		20 cm wall	30 cm wall	
1.	20 cm wall	$1(\mathrm{E})$	$3(\mathrm{H}, \mathrm{I}, \mathrm{B})$	
2.	30 cm wall	$1(\mathrm{~J})$	$1 \quad(\mathrm{G})$	

LAB PRACTICE : Ex. 3 Three room building (with different wall Thickness)
Measurement Sheet:

	Sr. No.	Description	No.	Length L (m)	$\begin{gathered} \hline \text { Breadth } \\ \text { B } \\ (\mathrm{m}) \end{gathered}$	Depth/ Th. (m)	Qty.	Total Qty.
		For 30 cm : $1^{\text {st }}$ footing $(60 \mathrm{~cm})$ $\begin{aligned} & \mathrm{L}=21.45-1 / 2 \times 0.6 \times 1-1 / 2 \times 0.4 \times 1 \\ & 2^{\text {nd }} \mathrm{L}=21.45-1 / 2 \times 0.5 \times 1-1 / 2 \times 0.3 \times 1 \\ & 3^{\mathrm{d}} \mathrm{~L}=21.45-1 / 2 \times 0.4 \times 1-1 / 2 \times 0.2 \times 1 \\ & 4^{\text {th }} \mathrm{L}=21.45-1 / 2 \times 0.3 \times 1-1 / 2 \times 0.2 \times 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 20.95 \\ & 21.05 \\ & 21.15 \\ & 21.20 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 2.514 \\ & 2.105 \\ & 1.692 \\ & 5.724 \end{aligned}$	$\begin{gathered} 19.16 \\ \text { Cu. m. } \end{gathered}$
		D.P.C. 10 CM Th. At Plinth 20 cm Wall 30 cm Wall	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$		$\begin{gathered} 4.0 \\ 6.36 \end{gathered}$	$\begin{aligned} & 10.36 \\ & \text { Sq. m. } \end{aligned}$
	5	$\begin{array}{\|r} \text { B.B.C.C. (1:5:10) in Room(75mm Th.) } \\ \text { Room } \\ \text { " } \\ \text { "، } \\ \text { " } \\ \text { " } \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 0.075 \\ \text { " } \\ \text { " } \\ \text { " } \end{gathered}$	$\begin{gathered} 1.2 \\ 0.9 \\ 0.75 \\ 0.3 \end{gathered}$	$\begin{gathered} 3.15 \mathrm{cu} . \\ \mathrm{m} . \end{gathered}$

EX. No. 4. Find the quantity of following items from given drawing.

1. Excavation in foundation
2. C.C. (1:4:8) for footing
3. Brick masonry (1:6CM) for sub structure
4. D.P.C. 5 cm . Th. At plinth level
5. R.C.C. (1:2:4) LINTEL 10 cm Th. with chajja and R.C.C. slab
6. 12 mm th smooth cement plaster in Drg. room
7. Ceiling plaster in all rooms
8. Outside plaster 20 mm th on all side

EX.4.

c.c. $(1: 4: 8)$

Wall Section with footing

Center Line plan

$\begin{aligned} & \text { Sr. } \\ & \text { No. } \end{aligned}$	Description	No.	Length L (m)	Breadth B (m)	Depth/ Th. (m)	Qty.	Total Qty.
1	Excavation L=44.4-1/2 $\times 1.2 \times 6$	1	40.8	1.2	1.1	53.85	$\begin{gathered} 53.8 \\ \mathrm{Cu} . \mathrm{m} . \end{gathered}$
2	C.C. 1:4:8 in foundation	1	40.8	1.2	0.2		$\begin{gathered} 9.79 \\ \text { Cu.m. } \end{gathered}$
3.	Brick masonry in sub structure $1^{\text {st }}$ layer $\mathrm{L}=44.4-1 / 2 \times 0.9 \times 6$ $2^{\text {nd }} \quad L=44.4 .-1 / 2 \times 0.7 \times 6$ $3^{\text {rd }} \quad L=44.4-1 / 2 \times 0.5 \times 6$ Fr GL to PL L $=44.4-1 / 2 \times 0.3 \times 6$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 41.7 \\ & 42.3 \\ & 42.9 \\ & 43.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.3 \\ 0.3 \\ 0.55 \end{gathered}$	$\begin{gathered} 11.25 \\ 8.88 \\ 6.43 \\ 7.17 \end{gathered}$	$\begin{aligned} & 33.73 \\ & \text { Cu.m. } \end{aligned}$
4.	DPC @ PL, $5 \mathrm{~cm} \mathrm{Th}$.	1	43.5	0.3	--	13.05	$\begin{aligned} & 13.05 \\ & \text { Sq.m. } \end{aligned}$

EX. No. 5. Find the quantity of following items from given drawing.

1. Excavation in foundation
2. B.B.C.C. $(1: 4: 8)$ for footing
3. Brick masonry ($1: 6 \mathrm{CM}$) for sub structure
4. $1^{\text {ST }} \mathrm{cl}$. Brick masonry in super structure
5. R.C.C. ($1: 2: 4$) Chajja, Loft, Plinth beam and R.C.C. slab
6. Glazed tile flooring with 2.00 mt height dado
7. Brick work for partition wall at Parapet

DOOR-WINDOW SCHEDULE
$\dot{D}_{1}=1.10 \times 2.10$
$\mathrm{D}_{2}=0.90 \times 2.10$
$\mathrm{G}_{1}=1.20 \times 2.10$
$W_{1}=1.80 \times 1.40$
$W_{2}=1.20 \times 1.40$
$W_{3}=1.50 \times 1.40$
$V=0.60 \times 0.60$

NOTES:-
ALL DIMENSIONS ARE IN METER NOT TO SCALE

EX. 6. Find the quantity for (i) Excavation in foundation(ii) P.C.C.(1:3:6) in foundation(iii) $1^{\text {st }}$ class brick masonry in foundation up to plinth(iv) Door and Windows (v)Skirting and flooring in room only (vi)Glazed Tile flooring in Toilet and W.C. with Dado up to lintel height.

THANK YOU...

