Axially loaded Column (IS: 456-2000 and SP: 16)

Rectangular/Square Column

- P = Axial load
- P_u = 1.5*P

•
$$P_u = (0.4*f_{ck}*A_c) + (0.67*f_v*A_{sc})$$
 (IS:456: Page-71)

• P_{safe}= Safe load = P_u / 1.5

• Assume,
$$A_{sc} = 0.8\%$$
 to 6% of $A_g = 0.008*A_g$ to $0.06*A_g$ (IS:456: page-48)

- $\bullet \quad A_g = (A_{sc} + A_c)$
- Minimum Diameter of main reinforcement = 12 mm
- Minimum No. of main bars = 4 (Rectangular and Square)
- Minimum Cover of column = 40 mm
- Maximum distance between any two bars along the face = 300 mm

- Pitch: (p): (1) Least lateral dimension
 - (2) 16*Dia(Small) of main steel
 - (3) 300 mm

Find: Min. Value
$$(1),(2),(3)>>> Max.$$
 Value of Pitch (p)

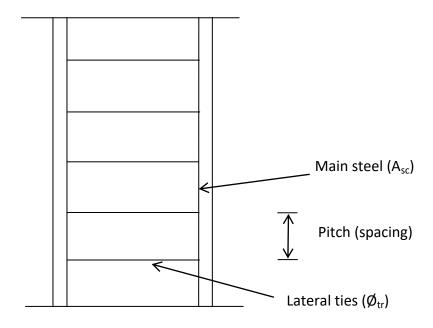
- Diameter:(Ø_{tr}): (1) ¼*Dia (Large) of main steel
 - (2) 6 mm

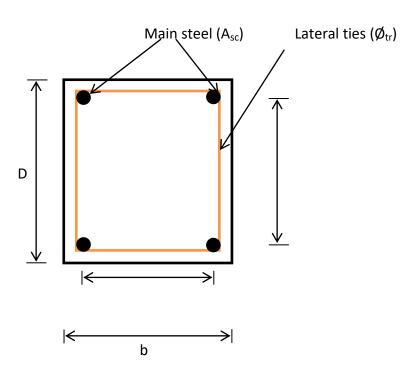
• Minimum eccentricity: (20 mm) (IS:456: page-42)

$$e_{min} = (I/500 + D/30) < 0.05*D$$
 ... (x-axis)

$$e_{min} = (1/500 + b/30) < 0.05*b$$
 ... (y-axis)

Note: A_{sc}= Area of steel in compression


A_c = Area of concrete


 $A_g = gross area = (b*D)$

 f_{ck} = characteristic strength of concrete (N/mm²)

 f_y = characteristic strength of steel (N/mm²)

For finding Diameter (\emptyset) and No. of bars of main steel, Use SP:16-page 229.

Circular Column

- P = Axial load
- $P_u = (1.5*P / 1.05)$
- $P_u = (0.4*f_{ck}*A_c) + (0.67*f_v*A_{sc})$

(IS:456: Page-71)

- P_{safe} = Safe load = $P_u / 1.5$
- Assume, $A_{sc} = 0.8\%$ to 6% of $A_g = 0.008*A_g$ to $0.06*A_g$

(IS:456: page-48)

- $A_g = (A_{sc} + A_c)$
- Minimum Diameter of main reinforcement = 12 mm
- Minimum No. of main bars = 6 (Circular)
- Minimum Cover of column = 40 mm
- Maximum distance between any two bars along the periphery = 300 mm
- Helix (or) spiral:

(IS:456: page-49)

- Pitch: (p): (1) 75 mm (max)
 - (2) $1/6 * D_c (max)$
 - (3) 25 mm (min)
 - (4) $3*Ø_{sp}$ (min)

Find:Min. Value (1), (2) & Max. Value (3), (4)

Provide pitch (p) in between above values

- Diameter of spiral:(Ø_{sp}): (1) ¼*Dia (Large) of main steel
 - (2) 6 mm

Find: Maximum value >>>Min.Value of Diameter(\emptyset_{sp})

Calculation for pitch (p):

$$0.36*\{(A_g/A_{cr})-1\}* f_{ck}/f_v \le (4*a_{sp}/p*D_c)...$$

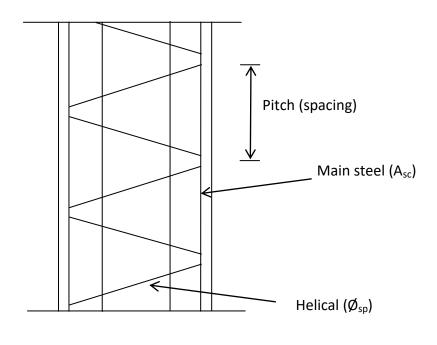
(IS: 456: page-71)

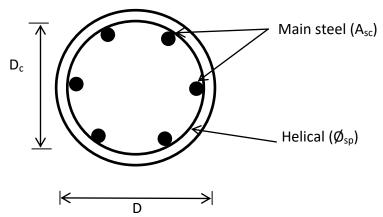
Note: $D_c = Diameter of core = (D - 2*c)$

c = cover

 A_{cr} = Area of core = $(\pi/4)*D_c^2$

 $A_g = gross area = (\pi/4)*D^2$


 $a_{sp} = (\pi/4)*\phi_{sp}^2$


 ϕ_{sp} = diameter of spiral

 f_{ck} = characteristic strength of concrete (N/mm²)

 f_y = characteristic strength of steel (N/mm²)

For finding Diameter (\emptyset) and No. of bars of main steel, Use SP:16-page 229.

