Q.1. What is M 25?

Ans. $\quad \mathrm{M}=\mathrm{Mix}$, and 25 represents the compressive strength of concrete in $\mathrm{N} / \mathrm{mm}^{2}$ at 28 days
Q.2. What is Fe 415?

Ans. $\quad \mathrm{Fe}=$ Ferrous metal and 415 represents tensile strength of steel in $\mathrm{N} / \mathrm{mm}^{2}$
Q.3. How many grades of steel are used?

Ans. There are three grades of steel:
(1) Fe 250 - Mild steel
(2) Fe 415 - TOR steel (or) HYSD bar
(3) Fe 500 - TOR steel (or) HYSD bar
Q.4. What is a full form of "HYSD" bar and "TMT" bar?

Ans. \quad HYSD $=$ High Yield strength Deformed bar
TMT = Thermo Mechanically Treated bar
Q.5. Give the modulus of elasticity of steel.

Ans. $\quad E_{s}=2 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Q.6. Give the value of partial safety factors for concrete and steel.

Ans. partial safety factor = 1.5 (concrete)
partial safety factor $=1.15$ (steel)
Q.7. Find out cracking strength (or) tensile strength of concrete grade M 25 .

Ans. $\quad \mathrm{f}_{\mathrm{cr}}=0.7 * \sqrt{f c k} \ldots$ (IS:456-page-16)

$$
\begin{aligned}
& =0.7 * \sqrt{25} \\
& =0.7 * 5=3.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Q.8. Find out modulus of elasticity of concrete grade M 25 .

Ans. $\quad \mathrm{E}_{\mathrm{c}}=5000 * \sqrt{f c k} \ldots$ (IS:456-page-16)

$$
\begin{aligned}
& =5000 * \sqrt{25} \\
& =5000 * 5=25000 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Q.9. Find out design strength of concrete grade M 25 .

Ans. Design strength of concrete $=0.446 * \mathrm{f}_{\mathrm{ck}}=0.446 * 25=11.15 \mathrm{~N} / \mathrm{mm}^{2}$
Q. 10

Ans. \quad Design strength of steel $=0.87^{*} \mathrm{f}_{\mathrm{y}}=0.87 * 415=361.05 \mathrm{~N} / \mathrm{mm}^{2}$
Q. 11 Find out $\mathrm{X}_{\mathrm{u}-\text { max }}$ for Fe 415 and effective depth is 500 mm .

Ans. $\quad X_{u-\max }=0.48 * d=0.48 * 500=240 \mathrm{~mm} \ldots(S P: 16-$ page-9) Table B
Q. 12 Find out $\mathrm{M}_{\text {u-lim }}$ for M 25 , section of beam is $230 \mathrm{~mm} \times 500 \mathrm{~mm}$

Ans. $\quad \mathrm{M}_{\mathrm{u}-\mathrm{lim}}=0.138 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{~d}^{2} \ldots(\mathrm{SP}: 16$-page-10) Table C

$$
=0.138 * 25 * 230 * 500^{2}
$$

$$
=198.375 \mathrm{kN} . \mathrm{m}
$$

Q. 13 Calculate minimum and maximum \% of steel for beam section $230 \mathrm{~mm} \times 450 \mathrm{~mm}$ (effective) Take, Fe 415 and effective cover $=30 \mathrm{~mm}$

Ans.

Q. 14 Give the number of minimum bars are required for square and circular column.

Ans. Minimum No. of bars $=4$ (Square/Rectangular)
Minimum No. of bars $=6$ (Circular)
Q. 15 Calculate bond strength of 20 mm diameter bar in Tension. Take: M 25, Fe 415

Ans. \quad Design bond stress $=\tau_{b d}=1.4 * 1.6=2.24 \mathrm{~N} / \mathrm{mm}^{2}$
Q. 16 Calculate bond strength of 20 mm diameter bar in compression. Take: M 30, Fe 500

Ans. Design bond stress $=\tau_{b d}=1.5 * 1.6 * 1.25=3 \mathrm{~N} / \mathrm{mm}^{2}$
Q. 17 Find out development length for 16 mm diameter bars in Tension. Take: M 25, Fe 415

Ans. $\quad L_{d}=\emptyset^{*} 0.87^{*} f_{y} / 4^{*} \tau_{b d} \quad(S P: 16:$ page-183)
$=(16 * 0.87 * 415) /\left(4 * 1.4^{*} 1.6\right)=644.73 \mathrm{~mm}$
Q. 18 Calculate minimum eccentricity for circular column of 600 mm diameter. Take unsupported length $=3 \mathrm{~m}$.

Ans. $\quad e_{\text {min }}=(L / 500)+(D / 30)$

$$
=(3000 / 500)+(600 / 30)=26 \mathrm{~mm}
$$

Q. 19 Calculate minimum and maximum \% of main steel for circular column of 500 mm diameter.

Ans. $\quad \mathrm{A}_{\text {sc-min }}=0.8 \% * \mathrm{~A}_{\mathrm{g}}=0.8^{*}\left(\pi / 4^{*} \mathrm{D}^{2}\right) / 100$

$$
=0.8 *\left(\pi / 4 * 500^{2}\right) / 100
$$

$$
=1570.79 \mathrm{~mm}^{2}
$$

$$
A_{s c-\max }=6 \% * A_{g}=6^{*}\left(\pi / 4^{*} D^{2}\right) / 100
$$

$$
=6 *\left(\pi / 4 * 500^{2}\right) / 100
$$

$$
=11780.97 \mathrm{~mm}^{2}
$$

Q. 20 Calculate design Shear strength of concrete of M 25 having 1% of steel.

Ans. $\quad \tau_{c}=$ Design shear strength of concrete $=0.64 \mathrm{~N} / \mathrm{mm}^{2}$ (SP:16:Page-178)
Q. 21 Give minimum \% of main steel in slab for mild steel and HYSD bars.

Ans.

$$
\begin{aligned}
A_{\text {st-min }} & =0.15 \% * b * D \ldots(\text { Mild steel })(\text { Fe } 250) \\
& =0.12 \% * b * D \ldots(\text { HYSD })(\text { Fe } 415 \& \text { Fe } 500)
\end{aligned}
$$

Q. 22 What is the value of minimum diameter of main steel for column?

Ans. $\quad 12$ mm
Q. 23 What is the maximum distance between two main steel bars for column?

Ans. $\quad 300$ mm
Q. 24 Give the minimum clear cover for beam, slab, column and footing.

Ans.

Clear cover $=20 \mathrm{~mm}($ Beam $)$	Clear cover $=20 \mathrm{~mm}($ Slab $)$
Clear cover $=40 \mathrm{~mm}($ Column $)$	Clear cover $=50 \mathrm{~mm}($ footing $)$

Q. 25 Give the minimum no. of dowel bars provided in footing.

Ans. $\quad 4$ Nos.
Q. 26 What is the criteria to decide one-way (or) two-way slab?

Ans. if, $L_{y} / L_{x}>=2$ (One way slab)
If, $L_{y} / L_{x}<2$ (Two way slab) ... ($L_{y}=$ Longer span , $L_{x}=$ shorter span)
Q. 27 Where critical section for B.M. are taken for one way and two way shear in footing?

Ans. Critical section is taken at a distance of " d " from column face ... (One way shear) Critical section is taken at a distance of " $\mathrm{d} / 2$ " from column face ... (Two way shear)
$d=$ effective depth of footing
Q. 28 Calculate the flange width of T-beam from the following data:

Depth of flange $=120 \mathrm{~mm}$
Width of rib $=300 \mathrm{~mm}$

Effective span $=7 \mathrm{~m}$
Ans. $\quad D_{f}=120 \mathrm{~mm}, \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}, \mathrm{~L}_{\mathrm{o}}=7000 \mathrm{~mm}$
$b_{f}=$ Flange width $=\left(L_{o} / 6+b_{w}+6 * D_{f}\right) \ldots$ (IS:456-page-37)
$=(7000 / 6+300+6 * 120)$
$=2186.67 \mathrm{~mm}$
Q. 29 What is "limit state"?

Ans. "The acceptable limit for safety and serviceability requirements before failure occurs is called a limit state."
Q. 30 Give the IS criteria for spacing of bars in slab.

Ans. Main steel:
Maximum spacing $=3 * \mathrm{~d}$ (or) 300 mm whichever is less....(IS:456-page-46)
Distribution steel:
Maximum spacing $=5^{*}$ d (or) 450 mm whichever is less....(IS:456-page-46)
Q. 31 What is the maximum spacing of bars in beam for Fe 415 ?

Ans. 180 mm ... (IS:456-page-46) Table-15
Q. 32 Find out maximum pitch and minimum diameter of lateral ties for column $400 \mathrm{~mm} \times 500 \mathrm{~mm}$ having 8 Nos. of 16 mm diameter bars as main steel.

Ans. Pitch: (1) b (or) D min = 400 mm ... (IS:456-page-48)
(2) $16^{*} \emptyset_{\text {small }}=16 * 16=256 \mathrm{~mm}$
(3) 300 mm

Minimum of all values $=256 \mathrm{~mm}=$ Maximum pitch

Diameter of ties: (1) $\emptyset_{\text {large }} / 4=16 / 4=4 \mathrm{~mm}$
(2) 6 mm

Maximum of above values $=6 \mathrm{~mm}=$ Minimum dia. of ties
Q. 33 Find out the stress of dowel bars of Fe 415.

Ans. \quad Stress in dowel bars $=0.75 * f_{y}=0.75 * 415=311.25 \mathrm{~N} / \mathrm{mm}^{2}$
Q. 34 Find out modification factor for slab. Take Fe 415 and 0.6% steel

Ans. \quad Select curve $=0.58 * f_{y}=0.58 * 415=240.7 \mathrm{~N} / \mathrm{mm}^{2}, \ldots($ IS:456-page-37,38) - Figure-4
Modification factor $=1.15$
Q. 35 Find out $\mathrm{Pt}_{\text {lim }}$ for singly reinforced beam. Take: M 25 , Fe 415

Ans. $\quad \mathrm{Pt}_{\text {lim }}=1.19 \% \ldots(S P: 16-$ page-10) Table E
Q. 36 Find out clear distance between each bar in footing having 20 Nos. of $\varnothing 16 \mathrm{~mm}$ bars.

Take: Clear cover $=50 \mathrm{~mm}$ and width of footing $=3000 \mathrm{~mm}$.
Ans. \quad Clear distance $=\left\{\left(b_{f}-2^{*} C-\varnothing\right) /(n-1)\right\}-\varnothing$

$$
\begin{aligned}
& =\{(3000-2 * 50-16) / 19\}-16 \\
& =135.79 \mathrm{~mm}
\end{aligned}
$$

Q. 37 Find out minimum \% of steel required for column of size $500 \mathrm{~mm} \times 500 \mathrm{~mm}$

Ans. $\quad \mathrm{A}_{\text {sc-min }}=0.8 \%{ }^{*} \mathrm{~A}_{\mathrm{g}}$

$$
=0.8 * 500 * 500 / 100
$$

$$
=2000 \mathrm{~mm}^{2}
$$

Q. 38 Find out maximum \% of steel required for circular column of diameter 400 mm

Ans. $\quad A_{\text {sc-max }}=6 \% * A_{g}$

$$
\begin{aligned}
& =6 *(\pi / 4) * 400^{2} / 100 \\
& =7539.84 \mathrm{~mm}^{2}
\end{aligned}
$$

Q. 39 What is max. dia of bar for slab whose overall thickness is 120 mm ?

Ans. $\quad \emptyset_{\max }=\mathrm{D} / 8=120 / 8=15 \mathrm{~mm}$
Q. 40 Find out minimum dowel area for column of size: $500 \mathrm{~mm} \times 500 \mathrm{~mm}$

Ans. \quad Minimum dowel area $=0.5 \%^{*}\left(b_{c} * b_{c}\right)=0.5 *(500 * 500) / 100=1250 \mathrm{~mm}^{2}$

