DRCS (3360601): Short questions for GTU exam: Prepared By: K.M.Vora

- Q.1. What is M 25?
- Ans. M = Mix, and 25 represents the compressive strength of concrete in N/mm² at 28 days
- Q.2. What is Fe 415?
- Ans. Fe = Ferrous metal and 415 represents tensile strength of steel in N/mm^2
- Q.3. How many grades of steel are used?
- Ans. There are three grades of steel:
 - (1) Fe 250 Mild steel
 - (2) Fe 415 TOR steel (or) HYSD bar
 - (3) Fe 500 TOR steel (or) HYSD bar
- Q.4. What is a full form of "HYSD" bar and "TMT" bar?
- Ans. HYSD = High Yield strength Deformed bar

TMT = Thermo Mechanically Treated bar

Q.5. Give the modulus of elasticity of steel.

Ans. $E_s = 2 * 10^5 \text{ N/mm}^2$

- Q.6. Give the value of partial safety factors for concrete and steel.
- Ans. partial safety factor = 1.5 (concrete)

partial safety factor = 1.15 (steel)

- Q.7. Find out cracking strength (or) tensile strength of concrete grade M 25.
- Ans. $f_{cr} = 0.7 * \sqrt{fck}$... (IS:456-page-16)

= 0.7 *
$$\sqrt{25}$$

= 0.7 * 5 = 3.5 N/mm²

Q.8. Find out modulus of elasticity of concrete grade M 25.

Ans.
$$E_c = 5000 * \sqrt{fck}$$
 ... (IS:456-page-16)

 $= 5000 * \sqrt{25}$

= 5000 * 5 = 25000 N/mm²

- Q.9. Find out design strength of concrete grade M 25.
- Ans. Design strength of concrete = $0.446 * f_{ck} = 0.446 * 25 = 11.15 \text{ N/mm}^2$

- Q.10 Find out design strength of steel grade Fe 415.
- Ans. Design strength of steel = $0.87 * f_v = 0.87 * 415 = 361.05 \text{ N/mm}^2$
- Q.11 Find out X_{u-max} for Fe 415 and effective depth is 500 mm.
- Ans. X_{u-max} = 0.48 * d = 0.48 * 500 = 240 mm ... (SP:16-page-9) Table B
- Q.12 Find out M_{u-lim} for M 25, section of beam is 230 mm x 500 mm
- Ans. M_{u-lim} = 0.138 * f_{ck} * b * d² ... (SP:16-page-10) Table C
 = 0.138 * 25 * 230 * 500²
 = 198.375 kN.m
 Q.13 Calculate minimum and maximum % of steel for beam sect
- Q.13 Calculate minimum and maximum % of steel for beam section 230 mm x 450 mm (effective) Take,Fe 415 and effective cover = 30 mm
- Ans. $A_{st-min} = (b^*d)^*0.85 / f_y \dots (IS:456-page-46)$

= (230 * 450)* 0.85 / 415

 $= 211.98 \text{ mm}^2$

 $A_{st-max} = 0.04*b*D$

= 0.04* 230* 480

 $= 4416 \text{ mm}^2$

- Q.14 Give the number of minimum bars are required for square and circular column.
- Ans. Minimum No. of bars = 4 (Square/Rectangular)

Minimum No. of bars = 6 (Circular)

- Q.15 Calculate bond strength of 20 mm diameter bar in Tension. Take: M 25, Fe 415
- Ans. Design bond stress = τ_{bd} = 1.4 * 1.6 = 2.24 N/mm²
- Q.16 Calculate bond strength of 20 mm diameter bar in compression. Take: M 30, Fe 500
- Ans. Design bond stress = τ_{bd} = 1.5 * 1.6 * 1.25 = 3 N/mm²
- Q.17 Find out development length for 16 mm diameter bars in Tension. Take: M 25, Fe 415
- Ans. $L_d = Ø^* 0.87^* f_y / 4^* \tau_{bd}$ (SP:16:page-183)

= (16*0.87*415)/(4*1.4*1.6) = 644.73 mm

Q.18 Calculate minimum eccentricity for circular column of 600 mm diameter. Take unsupported length = 3 m.

Ans. $e_{min} = (L/500) + (D/30)$

= (3000/500) + (600/30) = 26 mm

Q.19 Calculate minimum and maximum % of main steel for circular column of 500 mm diameter.

Ans.
$$A_{sc-min} = 0.8\%^*A_g = 0.8^*(\pi/4^*D^2)/100$$

 $= 0.8*(\pi/4*500^2)/100$

= 1570.79 mm²

 $A_{sc-max} = 6\% * A_g = 6*(\pi/4*D^2)/100$

 $= 6^{*}(\pi/4^{*}500^{2})/100$

= 11780.97 mm²

Q.20 Calculate design Shear strength of concrete of M 25 having 1 % of steel.

Ans. τ_c = Design shear strength of concrete = 0.64 N/mm² (SP:16:Page-178)

Q.21 Give minimum % of main steel in slab for mild steel and HYSD bars.

= 0.12% * b*D ... (HYSD)(Fe 415 & Fe 500)

- Q.22 What is the value of minimum diameter of main steel for column?
- Ans. 12 mm
- Q.23 What is the maximum distance between two main steel bars for column?
- Ans. 300 mm
- Q.24 Give the minimum clear cover for beam, slab, column and footing.
- Ans.Clear cover = 20 mm (Beam)Clear cover = 20 mm (Slab)Clear cover = 40 mm (Column)Clear cover = 50 mm (footing)
- Q.25 Give the minimum no. of dowel bars provided in footing.
- Ans. 4 Nos.
- Q.26 What is the criteria to decide one-way (or) two-way slab?

Ans. if, $L_y / L_x \ge 2$ (One way slab)

If, $L_y / L_x < 2$ (Two way slab) ... (L_y = Longer span , L_x = shorter span)

- Q.27 Where critical section for B.M. are taken for one way and two way shear in footing?
- Ans. Critical section is taken at a distance of "d" from column face ... (One way shear)
 Critical section is taken at a distance of "d/2" from column face ... (Two way shear)
 d = effective depth of footing
- Q.28 Calculate the flange width of T-beam from the following data:

Depth of flange = 120 mm

Width of rib = 300 mm

Effective span = 7 m

Ans. $D_f = 120 \text{ mm}$, $b_w = 300 \text{ mm}$, $L_o = 7000 \text{ mm}$

 b_f = Flange width = ($L_o/6 + b_w + 6*D_f$) ... (IS:456-page-37)

= (7000/6 + 300 + 6*120)

= 2186.67 mm

- Q.29 What is "limit state"?
- Ans. "The acceptable limit for safety and serviceability requirements before failure occurs is called a limit state."
- Q.30 Give the IS criteria for spacing of bars in slab.
- Ans. Main steel:

Maximum spacing = 3*d (or) 300 mm whichever is less....(IS:456-page-46)

Distribution steel:

Maximum spacing = 5*d (or) 450 mm whichever is less....(IS:456-page-46)

- Q.31 What is the maximum spacing of bars in beam for Fe 415?
- Ans. 180 mm ... (IS:456-page-46) Table-15
- Q.32 Find out maximum pitch and minimum diameter of lateral ties for column 400 mm x 500 mm having 8 Nos. of 16 mm diameter bars as main steel.
- Ans. Pitch: (1) b (or) D min = 400 mm ... (IS:456-page-48)

(2) $16*Ø_{small} = 16*16 = 256 \text{ mm}$

(3) 300 mm

Minimum of all values = 256 mm = Maximum pitch

Diameter of ties: (1) $Ø_{large} / 4 = 16/4 = 4 \text{ mm}$

(2) 6 mm

Maximum of above values = 6 mm = Minimum dia. of ties

Q.33 Find out the stress of dowel bars of Fe 415.

Ans. Stress in dowel bars =
$$0.75*f_y = 0.75*415 = 311.25 \text{ N/mm}^2$$

Ans. Select curve =
$$0.58*f_v = 0.58*415 = 240.7 \text{ N/mm}^2$$
,... (IS:456-page-37,38) – Figure-4
Modification factor = 1.15

Q.35 Find out Pt_{lim} for singly reinforced beam. Take: M 25, Fe 415

Q.36 Find out clear distance between each bar in footing having 20 Nos. of \emptyset 16 mm bars. Take: Clear cover = 50 mm and width of footing = 3000 mm.

Ans. Clear distance =
$$\{(b_f - 2*C - \emptyset)/(n-1)\} - \emptyset$$

 $= \{(3000 - 2*50 - 16)/19\} - 16$

Ans.
$$A_{sc-min} = 0.8\% * A_g$$

= 0.8 * 500*500 / 100

 $= 2000 \text{ mm}^2$

Q.38 Find out maximum % of steel required for circular column of diameter 400 mm

Ans.
$$A_{sc-max} = 6\% * A_g$$

 $= 6 * (\pi/4) * 400^2 / 100$

Ans.
$$\phi_{max} = D/8 = 120/8 = 15 \text{ mm}$$

Q.40 Find out minimum dowel area for column of size: 500 mm x 500 mm

Ans. Minimum dowel area = $0.5\% * (b_c * b_c) = 0.5 * (500 * 500) / 100 = 1250 \text{ mm}^2$