Axially loaded Column (IS: 456-2000 and SP: 16)

Rectangular/Square Column

- $P=$ Axial load
- $\mathrm{P}_{\mathrm{u}}=1.5^{*} \mathrm{P}$
- $P_{u}=\left(0.4 * f_{c k}{ }^{*} \mathrm{~A}_{\mathrm{c}}\right)+\left(0.67 * \mathrm{f}_{\mathrm{y}}{ }^{*} \mathrm{~A}_{\mathrm{sc}}\right)$
- $\quad P_{\text {safe }}=$ Safe load $=P_{u} / 1.5$
- Assume, $A_{s c}=0.8 \%$ to 6% of $A_{g}=0.008 * A_{g}$ to $0.06 * A_{g}$
(IS:456: page-48)
- $A_{g}=\left(A_{s c}+A_{c}\right)$
- Minimum Diameter of main reinforcement $=12 \mathrm{~mm}$
- Minimum No. of main bars = 4 (Rectangular and Square)
- Minimum Cover of column $=40 \mathrm{~mm}$
- Maximum distance between any two bars along the face $=300 \mathrm{~mm}$
- Lateral ties:
(IS:456: page-49)
- Pitch: (p): (1) Least lateral dimension
(2) $16 *$ Dia(Small) of main steel
(3) 300 mm

Find: Min. Value (1),(2),(3)>>> Max. Value of Pitch (p)

- Diameter: $\left(\emptyset_{\mathrm{tr}}\right):(1) \frac{1}{4} *$ Dia (Large) of main steel
(2) 6 mm

Find: Max. Value (1), (2)>>>Min.Value of Diameter

- Minimum eccentricity: (20 mm)
(IS:456: page-42)

$$
\begin{aligned}
& e_{\min }=(I / 500+D / 30)<0.05 * D \quad \ldots \text { (x-axis) } \\
& e_{\min }=(I / 500+b / 30)<0.05 * b \quad \ldots \text { (y-axis) }
\end{aligned}
$$

Note: $\mathrm{A}_{\mathrm{sc}}=$ Area of steel in compression
$\mathrm{A}_{\mathrm{c}}=$ Area of concrete
$\mathrm{A}_{\mathrm{g}}=$ gross area $=(\mathrm{b} * \mathrm{D})$
$\mathrm{f}_{\mathrm{ck}}=$ characteristic strength of concrete $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{f}_{\mathrm{y}}=$ characteristic strength of steel $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
For finding Diameter (\varnothing) and No. of bars of main steel, Use SP:16-page 229.

Circular Column

- $\quad P=$ Axial load
- $\mathrm{P}_{\mathrm{u}}=(1.5 * \mathrm{P} / 1.05)$
- $\mathrm{P}_{\mathrm{u}}=\left(0.4 * \mathrm{f}_{\mathrm{ck}}{ }^{*} \mathrm{~A}_{\mathrm{c}}\right)+\left(0.67 * \mathrm{f}_{\mathrm{y}}{ }^{*} \mathrm{~A}_{\mathrm{sc}}\right)$
(IS:456: Page-71)
- $\quad P_{\text {safe }}=$ Safe load $=P_{u} / 1.5$
- Assume, $\mathrm{A}_{s c}=0.8 \%$ to 6% of $\mathrm{A}_{\mathrm{g}}=0.008^{*} \mathrm{~A}_{g}$ to $0.06^{*} \mathrm{~A}_{g}$
(IS:456: page-48)
- $\mathrm{A}_{\mathrm{g}}=\left(\mathrm{A}_{\mathrm{sc}}+\mathrm{A}_{\mathrm{c}}\right)$
- Minimum Diameter of main reinforcement $=12 \mathrm{~mm}$
- Minimum No. of main bars = 6 (Circular)
- Minimum Cover of column $=40 \mathrm{~mm}$
- Maximum distance between any two bars along the periphery $=300 \mathrm{~mm}$
- Helix (or) spiral:
- Pitch: (p): (1) 75 mm (max)
(2) $1 / 6 * D_{c}(\max)$
(3) 25 mm (min)
(4) $3^{*} \emptyset_{\text {sp }}(\mathrm{min})$

Find:Min. Value (1), (2) \& Max. Value (3), (4)
Provide pitch (p) in between above values

- Diameter of spiral:($\emptyset_{\text {sp }}$): (1) $1 /{ }^{*}$ Dia (Large) of main steel
(2) 6 mm

Find: Maximum value >>>Min.Value of Diameter $\left(\emptyset_{\text {sp }}\right)$

- Calculation for pitch (p):
$0.36^{*}\left\{\left(A_{g} / A_{c r}\right)-1\right\}^{*} f_{c k} / f_{y}<=\left(4^{*} a_{\text {sp }} / p^{*} D_{c}\right) \ldots$
(IS: 456: page-71)

Note: $D_{c}=$ Diameter of core $=\left(D-2^{*} c\right)$
$\mathrm{c}=$ cover
$\mathrm{A}_{\mathrm{cr}}=$ Area of core $=(\pi / 4) * \mathrm{D}_{\mathrm{c}}{ }^{2}$
$\mathrm{A}_{\mathrm{g}}=$ gross area $=(\pi / 4)^{*} \mathrm{D}^{2}$
$\mathrm{a}_{\text {sp }}=(\pi / 4)^{*} \emptyset_{\text {sp }}{ }^{2}$
$\emptyset_{\text {sp }}=$ diameter of spiral
$f_{c k}=$ characteristic strength of concrete $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{f}_{\mathrm{y}}=$ characteristic strength of steel $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
For finding Diameter (\varnothing) and No. of bars of main steel, Use SP:16-page 229.

