Isolated Pad footing (IS: 456-2000 and SP: 16)

- P = Axial load on column
- SBC = Safe bearing capacity of soil
- b_c = size of column
- Size of footing:

 A_{f-req} = area of footing = (1.1*P)/SBC

Size of footing (b_f) = \sqrt{A} f

- Net upward pressure (p') =(1.5*P)/A_{f-pro}
- UDL (w) = p' * b_f
- L = distance from column face = $(b_f b_c)/2$
- Ultimate moment (M_u) = (w*L²/2)
- M_{u(lim)}= M_u = >>> SP:16:page-10 (Table C), find "d" (Depth of footing)
- d_{pro} = 2.5 * d... (Provide depth of footing 2.5 times more)
- Main reinforcement (A_{st}):

 $(M_u/b^*d^2) = ? >>>P_t \% ... SP:16: page-48.$

 $A_{st} = (P_t)/100 * b_f * d$

- Check: A_{st-pro} > A_{st-min} (OK)... IS:456-2000: page-47.
- Provide No. of bars and diameter using SP:16:page-229.
- D = Overall depth = $(d + \emptyset/2 + \emptyset + c)$ mm

Critical section for B.M.

Checks for footing

(1) Check for cracking:

Clear distance between two main bars = {(bf $-2*c - \emptyset) / (n - 1)$ } $-\emptyset$

Check: Clear distance < = Distance as per ... (IS: 456: pg-46-Table-15)... (OK)

(2) One-way shear:

Take a section at a distance of "d" from column face and calculate shear area.

 $V_u = p' *$ Shear area

 $\tau_v = V_u / (b^*d) \dots (IS:456: pg-72)$

where, b = length of critical section, d = depth of footing

 $P_t = 100^*A_{st}/(b^*d) >>>\tau_c \dots$ (SP:16: pg-178)

Check: $\tau_v < \tau_c \dots$ (OK)

(3) Two-way shear:

Take a section at a distance of "d/2" from each side of column face and calculate shear area.

V'_u = p' * Shear area

 $\tau'_{v} = V'_{u} / (b^{*}d) \dots (IS:456: pg-72)$

where, b = length of critical section, d = depth of footing

 $\tau'_{c} = k_{s} * \tau_{c} \dots$ (IS:456: pg-58,59)

Check: $\tau'_v < \tau'_c \dots$ (OK)

(4) Development length:

L_{d-req} =>>> (SP:16:pg-184)

$$L_{d-pro} = \{(b_f - b_c)/2\} - c$$

(5) Bearing force:(P_b)

 $P_b = (0.45*f_{ck}) * Area of column (b_c * b_c) ... (IS:456:pg-65,66)$

 $P_{u} = 1.5*P$

Check: $P_b > P_u$

Note: if this is not happen, then dowel bars are provided for extra force.

- Force in dowel bars = $(P_u P_b) kN$
- $A_1 = (b_f * b_f)$ (or) $A_1 = (b_c + 4*D) * (b_c + 4*D)$, whichever is less.
- $A_2 = (b_c * b_c)$
- Find ratio = $\sqrt{(A_1/A_2)}$, but <= 2.
- New Bearing force $(P_b) = (0.45 * f_{ck} * \sqrt{A_1/A_2}) * A_2$

Check: New P_b> P_u

- Dowel Area required = (Force in dowel bars)/ $0.75*f_{y}$
- Minimum dowel area = 0.5% * (b_c * b_c)
- Provide dowel bars >>> No. of bars and diameter using SP: 16: page-229.

Remember:

- Minimum 4 dowel bars are required to provide
- Maximum diameter of dowel bar = (Diameter of column + 3) mm

For Column, $(L_d) = (0.75*f_y)*Ø/(4*\tau_{bd})$ mm Dowel length in column = $L_d + 100$ (Kicker) mm Dowel length in footing = (D + 450) mm