Isolated Pad footing (IS: 456-2000 and SP: 16)

- $P=$ Axial load on column
- \quad SBC = Safe bearing capacity of soil
- $b_{c}=$ size of column
- Size of footing:
$\mathrm{A}_{\text {f-req }}=$ area of footing $=\left(1.1^{*} \mathrm{P}\right) / \mathrm{SBC}$
Size of footing $\left(b_{f}\right)=\sqrt{A} f$
- \quad Net upward pressure $\left(p^{\prime}\right)=\left(1.5^{*} \mathrm{P}\right) / \mathrm{A}_{\mathrm{f} \text {-pro }}$
- $\quad \operatorname{UDL}(w)=p^{*} b_{f}$
- $L=$ distance from column face $=\left(b_{f}-b_{c}\right) / 2$
- Ultimate moment $\left(M_{u}\right)=\left(w^{*} L^{2} / 2\right)$
- $M_{u(l i m)}=M_{u}=\ggg$ SP:16:page-10 (Table C), find "d" (Depth of footing)
- $\mathrm{d}_{\text {pro }}=2.5$ * d... (Provide depth of footing 2.5 times more)
- Main reinforcement $\left(\mathrm{A}_{\mathrm{st}}\right)$:
$\left(M_{u} / b^{*} d^{2}\right)=$? >>>P $P_{t} \%$... SP:16: page-48.
$A_{s t}=\left(P_{t}\right) / 100 * b_{f}^{*} d$
- Check: $A_{\text {st-pro }}>A_{\text {st-min }}(O K)$... IS:456-2000: page-47.
- Provide No. of bars and diameter using SP:16:page-229.
- $D=$ Overall depth $=(d+\varnothing / 2+\varnothing+c) m m$

Checks for footing

(1) Check for cracking:

Clear distance between two main bars $=\left\{\left(b f-2^{*} c-\varnothing\right) /(n-1)\right\}-\varnothing$

Check: Clear distance < = Distance as per ... (IS: 456: pg-46-Table-15)... (OK)
(2) One-way shear:

Take a section at a distance of " d " from column face and calculate shear area.

$\mathrm{V}_{\mathrm{u}}=\mathrm{p}^{\prime} *$ Shear area
$\tau_{v}=V_{u} /\left(b^{*} d\right)$... (IS:456: pg-72)
where, $b=$ length of critical section,$d=$ depth of footing
$P_{t}=100 * A_{s t} /(b * d) \ggg \tau_{c} \ldots(S P: 16: p g-178)$

Check: $\tau_{v}<\tau_{c} \ldots$ (OK)
(3) Two-way shear:

Take a section at a distance of " $\mathrm{d} / 2$ " from each side of column face and calculate shear area.

$\mathrm{V}_{\mathrm{u}}{ }^{\prime}=\mathrm{p}^{\prime}$ * Shear area
$\tau^{\prime}{ }_{v}=V^{\prime}{ }_{u} /\left(b^{*} d\right) . .$. (IS:456: pg-72)
where, $b=$ length of critical section, $d=$ depth of footing
$\tau^{\prime}{ }_{\mathrm{c}}=\mathrm{k}_{\mathrm{s}}{ }^{*} \tau_{\mathrm{c}} \ldots$ (IS:456: pg-58,59)

Check: $\tau^{\prime}{ }_{v}<\tau^{\prime}{ }_{c} \ldots$ (OK)
(4) Development length:

$$
\begin{aligned}
& L_{d-\text { req }}=\ggg(S P: 16: p g-184) \\
& L_{d-p r o}=\left\{\left(b_{f}-b_{c}\right) / 2\right\}-c
\end{aligned}
$$

Check: $L_{\text {d-req }}<L_{\text {d-pro }} \ldots$ (OK)
(5) Bearing force: $\left(\mathrm{P}_{\mathrm{b}}\right)$

```
\(\mathrm{P}_{\mathrm{b}}=\left(0.45 * \mathrm{f}_{\mathrm{ck}}\right) *\) Area of column \(\left(\mathrm{b}_{\mathrm{c}} * \mathrm{~b}_{\mathrm{c}}\right) \ldots\) (IS:456:pg-65,66)
\(\mathrm{P}_{\mathrm{u}}=1.5^{*} \mathrm{P}\)
```

Check: $\mathrm{P}_{\mathrm{b}}>\mathrm{P}_{\mathrm{u}}$

Note: if this is not happen, then dowel bars are provided for extra force.

- Force in dowel bars $=\left(\mathrm{P}_{\mathrm{u}}-\mathrm{P}_{\mathrm{b}}\right) \mathrm{kN}$
- $A_{1}=\left(b_{f} * b_{f}\right)$ (or) $A_{1}=\left(b_{c}+4^{*} D\right)^{*}\left(b_{c}+4^{*} D\right)$, whichever is less.
- $A_{2}=\left(b_{c}{ }^{*} b_{c}\right)$
- Find ratio $=\sqrt{ }\left(\mathrm{A}_{1} / \mathrm{A}_{2}\right)$, but $<=2$.
- New Bearing force $\left(P_{b}\right)=\left(0.45 * f_{c k} * \sqrt{ } A_{1} / A_{2}\right) * A_{2}$

Check: New $\mathrm{P}_{\mathrm{b}}>\mathrm{P}_{\mathrm{u}}$

- Dowel Area required $=\left(\right.$ Force in dowel bars) $/ 0.75 * \mathrm{f}_{\mathrm{y}}$
- Minimum dowel area $=0.5 \%$ * $\left(b_{c}{ }^{*} b_{c}\right)$
- Provide dowel bars >>> No. of bars and diameter using SP: 16: page-229.

Remember:

- Minimum 4 dowel bars are required to provide
- \quad Maximum diameter of dowel bar $=($ Diameter of column +3$) \mathrm{mm}$

For Column, $\left(\mathrm{L}_{\mathrm{d}}\right)=\left(0.75{ }^{*} \mathrm{f}_{\mathrm{y}}\right) * \varnothing /\left(4^{*} \mathrm{t}_{\mathrm{bd}}\right) \mathrm{mm}$
Dowel length in column $=L_{d}+100$ (Kicker) mm
Dowel length in footing $=(D+450) \mathrm{mm}$

