GOVERNMENT POL YTECHNIC FOR GIRLS , AHMEDABAD

Civil Engineering Department

Shri. P.N. Patel
L.C.E.

Subject:- Estimating, Costing and Valuation
Subject Code:- 3350604
Semester:- $\mathbf{5}^{\text {th }}$

UNIT- 3

Rate Analysis of Civil Works

Rate Analysis:

- The process of determining rate per unit of any work in Civil Engineering project like earthwork, concrete work, brickwork, plastering, painting etc. is known as Analysis of Rates or simply Rate Analysis.
- The rates of materials and labor vary from place to place and hence the rates of different items of works also vary from place to place. The rates of these works further help in determining cost of particular work and in turn cost of the project

Necessity of Rate Analysis

1. To determine the actual cost per unit of the items.
2. To work out the economical use of materials and processes in completing the particulars item.
3. To calculate the cost of extra items which are not provided in the contract bond but are to be executed as per the directions of the department.
4. To revise the schedule of rates due to increase in the cost of material and labor or due to change in technique.

Factors Deciding Rate of Items

- The various factors that are involved in determining rate of any item, process or work are mentioned below:
\square Specifications of works and material about their quality, proportion and Construction al operation method.
\square Quantity of materials and their costs.
\square Cost of labor and their wages.
Location of site of work and the distances from source and conveyance charges.
\square Overhead and establishment charges
\square Profit and miscellaneous expenses of the contractor

Procedure of Rate Analysis

- The analysis of rates is worked out for the unit payment of the particular item of work under two heads: Materials and Labor.

1. The cost of items of work $=$ Material cost + Labor cost
2. Other costs included to the above cost of items of work are

- Tools and Plants (T \& P) $=2.5$ to 3% of the labor cost
- Transportation cost (if conveyance more than 8 km is considered.)
- Water charges $=1.5$ to 2% Of total cost
- Contractor's profit $=10 \%$

The rate of various materials as per specifications for the items under consideration can be chalked out from market survey. The costs of materials are taken as delivered at site of work. This is inclusive of:

The first cost (cost at origin),
Cost of transport, railway freight (if any), etc.
Local taxes and other charges.

- Labor cost:

To obtain labor cost the number and wages of different categories of labor, skilled (Skilled 1st Class), semi-skilled (Skilled 2nd Class) and unskilled, required for each unit of work should be known and this number is multiplied by the respective wage per day.

TASK WORK:

- The capacity of doing work by an artisan or skilled labor in the form of quantity of work in a working day of eight hour is known as the task work.
- The task work is not same at all place but varies from place to pace and person to person.
- It depends on various factors

1. Type of labor- male/female
2. Nature of work- ordinary/special
3. Climatic condition- Hot , cold, Rainy
4. Situation of work- soil condition/time limit
5. Skill of labor- skilled/unskilled
6. Site organization- poor/good
7. Size of work- quantity of work
8. Location of work -congested/ isolated area

Task or out-turn work

- This is the quantity of work which can be done by an artisan or skilled labor (with the help of semiskilled and unskilled labors) of the trade working for 8 hours a day.
- The outturn of work per artisan varies according to the nature, size, height, situation, location etc.
- Out-turn is more in larger cities, as the more specialized and experienced labors are available, than the small cities and country sides.

Particulars of items

Quantity of work per day (8 hrs a day)

1. Earthwork in excavation in foundation in ordinary soil, lead up to 50 m and lift up to 1.5 m
2. Earthwork in excavation in hard soil for 100 m lead and 1.5 m lift.
3. Excavation in rock
4. Sand filling in plinth
5. Breaking of brick ballast 40 mm gange
6. Breaking of stone ballast 40 mm gauge
7. Breaking of stone ballast 20 mm gauge
8. Brickwork in cement mortar in foundation and plinth
9. Brickwork in cement mortar in superstructure
10. Half brick wall in partition
II. Brick work in cement mortar in arches
11. Lime concrete in foundation/ flour
12. Lime concreting in roof terracing
13. Cement concrete ($1: 2: 4$)
14. R.C.C. work
3.00 cum per mazdoor/Beldar
2.00 cum per mazdoor/Beldar
1.00 cum per mazdoor
4.00 cum per mazdoor
0.75 cum per labour/breaker
0.40 cum per labour
0.25 cum per labour
1.25 cum per mason
1.00 cum per mason.
5.00 square meter per mason
0.55 cum per mason
8.50 cum per mason
6.00 cum per mason
5.00 cum per mason
3.00 cum per mason

LABOUR REQUIREMENTS

Description of work	Quantity	Labour		
1. Earthwork in excavation in foundation, trenches etc. in ordinary soil including disposal up to 30 m and lift of 1.5 m	$28.30 \mathrm{~m}^{3}$ $(1000 \mathrm{cft})$	Beldar -5 nos. Mazdoor-4 nos.		
2. Refilling of excavated earth in				
foundation, plinth etc. including				
consolidation in 150 mm layer.			\quad	$28.30 \mathrm{~m}^{3}$
:---				
3. Laying cement concrete				

LUMPSUM:

- While preparing an estimate, it is not possible to work out in detail in case of petty items. Items other than civil engineering such items are called lump sum items or simply L.S. Items.
- Sometimes while preparing estimate for the certain small items like front architecture or decoration work of a building it is not possible to workout detailed quantities so far such lump sum items a lump sum rate is provided.
The following are some of L.S. Items in the estimate.

1. Water supply and sanitary arrangements.
2. Electrical installations like meter, motor, etc.,
3. Architectural features.
4. Contingencies and unforeseen items.

Rate Analysis of Important Items:

[1] Earthwork in excavation in foundation including filling in trenches up to 30 m , lead and 1.5 m lift
Assume volume of excavation $=100 \mathrm{cu} \mathrm{m}$ OR Take unit qty $=100 \mathrm{cu} . \mathrm{m}$.

Sr . No.	Description	Quantity	Rate	Unit	Amount
1	Materials:	--	--	--	---
	Labors: Head mason Male labor/ Female labor- Mazdoor $\}$ Bhisti/ Beldar T.P. \&Sundries etc.	$\begin{gathered} 1 / 2 \\ 7 \\ 7 \\ 18 \\ \text { L.S. } \end{gathered}$	$\begin{aligned} & 800 \\ & 400 \\ & 400 \\ & 350 \\ & 200 \end{aligned}$	Per day 66 66 66 L.S.	$\begin{array}{r} 400=00 \\ 2800=00 \\ 2800=00 \\ 6300=00 \\ 200=00 \end{array}$
				Total	$12500=00$
		$\text { Rate }=1375$ per Cu.m.	Add: 10% con $00=137.5$	ors' profit and Total 8.00 Rs.	$\begin{gathered} 1250=00 \\ \hline 13750=00 \end{gathered}$

[2] First class brickwork in super structure with cement mortar (1:6)

(a) Estimation of Materials:

Assume volume of brickwork $=10 \mathrm{cu} \mathrm{m}$
Nominal size of modular brick $=20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$
Hence, the number of bricks required $=10 / 0.2 \times 0.1 \times 0.1=5000$ Nos.
Actual size of modular brick $=19 \mathrm{~cm} \times 9 \mathrm{~cm} \times 9 \mathrm{~cm}$
The remaining space is filled by mortar, hence the volume of mortar required for 10 cum
$=10-(5000 \times 0.09 \times 0.09 \times 0.19)=2.3 \mathrm{cu} \mathrm{m}$. (Wet volume or qty. $)$
Additional mortar required for frog filling, brick bonding and wastages @ 15%.
Thus volume of set mortar $=2.3+2.3 \times 15 \backslash 100=2.64 \mathrm{cum}$.

But, 1.25 cu m of dry volume of mortar materials produces

 1.0 cu m set mortar.Hence, volume of dry materials required for 2.64 cu m of set mortar
$=1.25 \times 2.64 \mathrm{cu} \mathrm{m}=3.30 \mathrm{cu} \mathrm{m}$. dry vol. or dry qty. of mortar

- [Note: As a thumb rule, dry volume of mortar materials is 30% of brick work]

Sum of proportion of cement and sand $=1+6=7$
Hence, volume of cement $=3.3 / 7=0.47 \mathrm{cu} \mathrm{m}$.
However, cement is available in 50 kg bag whose volume is 0.0347 cu m.
[Mass $=50 \mathrm{~kg} ;$ Density $=1440 \mathrm{~kg} / \mathrm{m3}$; Thus, Volume $=50 / 1440=$ 0.0347 cu m]
[Thumb rule: 1 cu m of cement $=30$ bags of cement.]

Therefore, number of bags required $=0.47 / 0.0347 \approx 13.5$ bags.
Volume of sand required $=0.47 \times 6=2.82 \mathrm{cu} \mathrm{m}$.
b) Rate Analysis

Assume, the volume of brickwork $=10 \mathrm{cu}$ m.

Particulars
Material Charges

1. Brick

5000 Nos.
13.5 bags
2.82 cum

Labour Charges(Old rate)

1. Head Mason	2 Nos.
2. Mason	6 Nos.
p. Mazdoor	16 Nos.
4. Bhisti	08 Nos.
T\&P, Sundries, etc.	LS

450.00 per day	900.00
350.00 per day	2100.00
220.00 per day	3520.00
220.0 per day	1760.00
200.00 LS	200.00
Total Materials and Labour	$\mathbf{2 6 2 8 7 . 0 0}$
Add 1.5\% water charges	394.30
Add 10\% Contractors profit	2628.70
Grand Total	$\mathbf{2 9 3 1 0 . 0 0}$

Rate per cum Rs. $=29310.00 / 10=2931.00$ Rs.

Name or work: First class brickwork in super structure with cement mortar (1:6) Assume, the volume of brickwork $=10 \mathrm{cu} \mathrm{m}$.

Sr.No.	Description	Quantity	Rate	Unit	Amount
1	Materials: Bricks Cement Sand	$\begin{gathered} 5000 \\ 13.5 \\ 2.82 \end{gathered}$	$\begin{gathered} 5000=00 \\ 325=00 \\ 425=00 \end{gathered}$	Nos./1000 Per bags Cu.m.	$\begin{array}{r} 25000=0 \\ 4387=5 \\ 1198=5 \end{array}$
				Total Rs.	30586=0
	Labors: Head mason Mason Male labor Female labor/ Mazdoor Bhisti/Beldar T.P. \&Sundries etc.	$\begin{gathered} 1 / 2 \\ 6 \\ 16 \\ 8 \\ 8 \\ \text { L.S. } \end{gathered}$	$\begin{aligned} & 800=00 \\ & 700=00 \\ & 400=00 \\ & \\ & 350=00 \\ & 250=00 \end{aligned}$	Per day " " " L.S.	$\begin{array}{r} 400=00 \\ 4200=00 \\ 6400=00 \\ 2800=00 \\ 250=00 \end{array}$
4				Total Rs. Net Total	$\begin{aligned} & 14050=0 \\ & 44636=0 \\ & \hline \end{aligned}$
		Add: 1.5% water charge 10% contractors' profit Grand Total Rate $=49769.14 / 10=$			$\begin{aligned} 669 & =54 \\ 4463 & =60 \\ 49769 & =14 \end{aligned}$

[3] Rate analysis of P.C.C.(1:4:8)for foundation

- Calculation of Materials:

Assume, the volume of Concrete $=10 \mathrm{cu} \mathrm{m}$
Dry Volume of C.C. $=$
Add 27% shrinkage $=10+0.27 \times 10=12.7$
25% wastage $=10+0.25 \times 10=\underline{12.5}+127=15.2 \mathrm{Cu} . \mathrm{m}$.
Or 52% as shrinkage and wastage $=10+10 \times 0.52=15.2$ Cu.m
Net dry volume $=15.2 \mathrm{cu} . \mathrm{m}$.
Qty $=($ dry vol/sum of proportion $) x$ part of that material
Ratio $=1+4+8=13$
Calculation of material:

1. Cement vol $=(15.2 / 13) \times 1=1.17 \mathrm{cu} . \mathrm{m}$

No. of cement bag= $1.17 / 0.035=33.43=34$ Nos.
2. Vol. of sand $=4 \times 1.17=4.68$ cu.m.OR ($15.2 / 13$) $\times 4=4.68$
3. Coarse Aggregate $=8 \times 1.17=9.36$ cu.m.

[3] Rate analysis of P.C.C.(1:4:8)for foundation

4. Rate analysis: 20 mmTh . rough cement plaster ($1: 6 \mathrm{CM}$) on Brick wall of super structure

- Calculation of materials:
- Assume unit area for plaster= 100 sq.m.
- Qty.of wet motar required= $100 \times 0.02=2.0 \mathrm{cu} . \mathrm{m}$.
- Add. 30% for joint filling, wastage, finishing $=2.0+2 \times 0.3=2.6$

OR $2 \times 1.3=2.6$

- Add. 25% for shrinkage $=2.6+2.6 \times 0.25=3.25$ Cu.m.

OR $2.6 \times 1.25=3.25$ Cu.m.

- OR Dry vol $=2.0+2 \times 0.55=3.10$
- Take dry vol $=3.25 \mathrm{cu}$. m.,, total sum $=1+6=7$
- Vol. of cement $=(3.25 / 7)^{*} 1=0.464 \mathrm{cu} . \mathrm{m}$
- No. of Cement bag $=0.464 / 0.035=13.265=14 \mathrm{bag}$
- Vol. sand $=0.464 \times 6=2.784 \mathrm{cu} . \mathrm{m}$

4. Rate analysis: 20 mmTh . Rough(sand faced) cement plaster (1:6 CM) on Brick wall of super structure

Sr.No	Description	Quantity	Rate	Unit	Amount
1	Materials: Cement Sand	14 nos. 2.784	$\begin{aligned} & 325=00 \\ & 425=00 \end{aligned}$	Per bags Cu.m.	$\begin{aligned} & 4550.00 \\ & 1183.20 \end{aligned}$
				Total	5733.20
	Labors: Head mason Mason Male labor Female labor/ Mazdoor Bhisti/Beldar T.P. \&Sundries etc.	$\begin{gathered} 1 / 2 \\ 10 \\ 10 \\ 10 \\ 2 \\ \text { L.S. } \end{gathered}$	$\begin{aligned} & 800=00 \\ & 700=00 \\ & 400=00 \\ & 400=00 \\ & 350=00 \\ & 250=00 \end{aligned}$	Per day " "، L.S.	$\begin{gathered} 400.00 \\ 7000.00 \\ 4000.00 \\ 4000.00 \\ 700.00 \\ 250.00 \end{gathered}$
4				Total labor+ material cost	16350.00 22083.20
			Add: 1.5% water charge 10% contractors' profit Grand Total Rs. Rate $=$ $24622.77 / 100=\text { RS }$		$\begin{gathered} 331.25 \\ 2208.32 \\ \hline 24622.77 \end{gathered}$

[5] Rate analysis: 12 mmTh . Smooth cement plaster (1:4 CM) on Brick wall of super structure

- Calculation of materials:
- Assume unit area for plaster= 100 sq.m.
- Qty. of wet motar required= $100 \times 0.012=1.2 \mathrm{Cu} . \mathrm{m}$.
- Add. 30% for joint filling, wastage, finishing $=1.2+1.2 \times 0.3=1.56$

OR 1.2 X1.3 = 1.56
Add. 25% for shrinkage $=1.56+1.56 \times 0.25=1.95$ Cu.m. OR $\quad 1.56$ X1. $25=1.95 \mathrm{Cu} . \mathrm{m}$.

- OR Dry vol. $=1.2+1.2 \times 0.55=1.86$
- Take dry vol $=1.95$ say 2.00 Cu . m., Total proportion sum $=1+4=5$
- Vol. of cement $=(2.0 / 5) \mathrm{x} 1=0.40 \mathrm{Cu} . \mathrm{m}$
- No. of Cement bag $=0.4 / 0.035=11.43=11.5=12$ bag
- Vol. sand $=0.4 \times 4=1.6 \mathrm{Cu} . \mathrm{m}$

[6] R.C.C work ($1: 2: 4$)for slab

- Calculation of materials:
- Take unit = 10 cu.m.
- Dry vol .of concrete required $=10+10 \times 0.52=15.2$ Cu.m.
- Total proportion $=1+2+4=7$
- Vol. of cement=($15.2 / 7$) $\times 1=2.17$ Cu.m. ,
- No. of bags=2.17/0.035= 62 bags
- Vol. of sand $=2.17 \times 2=4.34 \mathrm{Cu} . \mathrm{m}$.
- Vol. of Aggregate $=2.17 \times 4=8.68$ Cu.m.
- steel @ 1% of concrete vol.= vol. steel $0.01 \times 10=0.1$ cu.m.
- Density of steel $7850 \mathrm{Kg} / \mathrm{cu} . \mathrm{m}$.
- Wt. of steel $=7850 \times 0.01=785 \mathrm{Kg}$.

