ASSIGNMENT-1: STEEL ROOF TRUSS

Ex.1. Determine Dead load, live load and wind load per panel point for the howe type roof truss with the following data:

1. Span of truss $=15 \mathrm{~m}$
2. Spacing of truss $=4 \mathrm{~m}$
3. Rise of truss $=3 \mathrm{~m}$
4. Height of truss above G.L. $=20 \mathrm{~m}$
5. Weight of purlin \& fixtures $=120 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
6. Weight of A.C. sheet $=150 \mathrm{~N} / \mathrm{m}^{2}$ on slope area
7. Weight of bracing $=12 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
8. Opening of wall area $=10 \%$
9. Life of roof truss $=25$ years
10. Terrain category $=3$
11. Class of structure $=A$
12. Topography $=$ plain with slope $<3^{\circ}$
13. Total no. of panels $=8$
14. Location of truss = Ahmedabad
(ANS: Angle $=21.8^{\circ}$, P.R. $=8.07 \mathrm{~m}, \mathrm{~A}_{\mathrm{p}}=30 \mathrm{~m}^{2}, \mathrm{~A}_{\mathrm{s}}=32.31 \mathrm{~m}^{2}$, Total D.L. $=$ 11806.5 N, Total L.L. $=10280 \mathrm{~N}, \mathrm{~V}_{\mathrm{b}}=39 \mathrm{~m} / \mathrm{s}, \mathrm{k} 1=0.92, \mathrm{k} 2=1.01, \mathrm{k} 3=1.0$, $\mathrm{V}_{\mathrm{z}}=36.23 \mathrm{~m} / \mathrm{s}, \mathrm{P}_{\mathrm{z}}=787.5 \mathrm{~N} / \mathrm{m}^{2}, \mathrm{C}_{\mathrm{pe}}=(-0.8), \mathrm{C}_{\mathrm{pi}}=0.5$,

Total W.L. $=(-33077.36 \mathrm{~N})$

Ex.2. Determine Dead load, live load and wind load per panel point for the howe type roof truss with the following data:

1. Span of truss $=12 \mathrm{~m}$
2. Spacing of truss $=3.5 \mathrm{~m}$
3. Rise of truss $=2.5 \mathrm{~m}$
4. Height of truss above G.L. $=12 \mathrm{~m}$
5. Weight of purlin \& fixtures $=90 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
6. Weight of A.C. sheet $=130 \mathrm{~N} / \mathrm{m}^{2}$ on slope area
7. Weight of bracing $=12 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
8. Opening of wall area $=25 \%$
9. Life of roof truss $=25$ years
10. Terrain category $=2$
11. Class of structure $=A$
12. Topography $=$ plain with slope $<3^{\circ}$
13. Total no. of panels $=8$
14. Location of truss $=$ Bhuj
(ANS: Angle $=22.6^{\circ}$, P.R. $=6.5 \mathrm{~m}, \mathrm{~A}_{\mathrm{p}}=21 \mathrm{~m}^{2}, \mathrm{~A}_{\mathrm{s}}=22.75 \mathrm{~m}^{2}$, Total D.L. $=$ 6989.5 N , Total L.L. $=6972 \mathrm{~N}, \mathrm{~V}_{\mathrm{b}}=50 \mathrm{~m} / \mathrm{s}, \mathrm{k} 1=0.90, \mathrm{k} 2=1.02, \mathrm{k} 3=1.0, \mathrm{~V}_{\mathrm{z}}=$ $45.90 \mathrm{~m} / \mathrm{s}, \mathrm{P}_{\mathrm{z}}=1264.08 \mathrm{~N} / \mathrm{m}^{2}, \mathrm{C}_{\mathrm{pe}}=(-0.8), \mathrm{C}_{\mathrm{pi}}=0.7$,

Total W.L. $=(-43136.73 \mathrm{~N})$

Ex.3. Determine Dead load, live load and wind load per panel point for the howe type roof truss with the following data:

1. Span of truss $=12 \mathrm{~m}$
2. Spacing of truss $=3 \mathrm{~m}$
3. Rise of truss $=2.9 \mathrm{~m}$
4. Height of truss above G.L. $=10 \mathrm{~m}$
5. Weight of purlin \& fixtures $=120 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
6. Weight of A.C. sheet $=150 \mathrm{~N} / \mathrm{m}^{2}$ on slope area
7. Weight of bracing $=12 \mathrm{~N} / \mathrm{m}^{2}$ on plan area
8. Permeability $=$ Medium
9. Life of roof truss $=50$ years
10. Terrain category $=2$
11. Class of structure $=B$
12. Topography $=$ plain with slope $<3^{\circ}$
13. Total no. of panels $=8$
14. Location of truss = Vadodara
(ANS: Angle $=25.78^{\circ}$, P.R. $=6.66 \mathrm{~m}, \mathrm{~A}_{\mathrm{p}}=18 \mathrm{~m}^{2}, \mathrm{~A}_{\mathrm{s}}=19.98 \mathrm{~m}^{2}$, Total D.L. $=$ 6993 N, Total L.L. $=5212.8 \mathrm{~N}, \mathrm{~V}_{\mathrm{b}}=44 \mathrm{~m} / \mathrm{s}, \mathrm{k} 1=1.00, \mathrm{k} 2=0.98, \mathrm{k} 3=1.0, \mathrm{~V}_{\mathrm{z}}=$ $43.12 \mathrm{~m} / \mathrm{s}, \mathrm{P}_{\mathrm{z}}=1115.6 \mathrm{~N} / \mathrm{m}^{2}, \mathrm{C}_{\mathrm{pe}}=(-0.8), \mathrm{C}_{\mathrm{pi}}=0.5$,

Total W.L. $=(-28976.60 \mathrm{~N})$

ASSIGNMENT-2 BOLTED \& WELDED CONNECTION

Ex.1. Two plates 80 mm wide and 12 mm and 20 mm thick are connected by lap joint to resist design tensile load of 70 kN . Design a lap joint using M 16 bolts of grade 4.6. And grade 410 plates.
(ANS: fu $=400 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Anb}=157 \mathrm{~mm}^{2}, \quad \mathrm{~V}_{\mathrm{nsb}}=36.26 \mathrm{kN}, \mathrm{V}_{\mathrm{dsb}}=29 \mathrm{kN}, \mathrm{kb}=$ $0.49, \mathrm{~V}_{\mathrm{npb}}=94.08 \mathrm{kN}, \mathrm{V}_{\mathrm{dpb}}=75.26 \mathrm{kN}$, Bolt value $=29 \mathrm{kN}$, No. of bolt required $=3$ Nos.)

Ex.2. A member of steel roof truss consists of two angles ISA: $75 \times 75 \times 6 \mathrm{~mm}$ placed back to back on either side of 8 mm thick gusset plate. The member carries an ultimate tensile load of 150 kN . Determine the number of 16 mm diameter 4.6 grade ordinary bolts required for the joint. Assume fu of plate as 410 MPa .
(ANS: fu $=400 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Anb}=157 \mathrm{~mm}^{2}, \quad \mathrm{~V}_{\mathrm{nsb}}=72.52 \mathrm{kN}, \mathrm{V}_{\mathrm{dsb}}=58 \mathrm{kN}, \mathrm{kb}=$ $0.49, \mathrm{~V}_{\mathrm{npb}}=62.72 \mathrm{kN}, \mathrm{V}_{\mathrm{dpb}}=50.18 \mathrm{kN}$, Bolt value $=50.18 \mathrm{kN}$, No. of bolt required $=3$ Nos.)

Ex.3. An ISA: $100 \times 65 \times 8 \mathrm{~mm}$ is carrying an axial tension load of 125 kN with longer leg is connected to gusset plate 10 mm thick. Design the joint using 20 mm diameter 4.6 grade bolts. Assume fu of plate as 410 MPa .
(ANS: fu $=400 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Anb}=245 \mathrm{~mm}^{2}, \quad \mathrm{~V}_{\mathrm{nsb}}=56.58 \mathrm{kN}, \mathrm{V}_{\mathrm{dsb}}=45.26 \mathrm{kN}$, $\mathrm{kb}=0.507, \mathrm{~V}_{\mathrm{npb}}=81.12 \mathrm{kN}, \mathrm{V}_{\mathrm{dpb}}=64.89 \mathrm{kN}$, Bolt value $=45.26 \mathrm{kN}$, No. of bolt required $=3$ Nos.)

Ex.4. Design fillet weld to connect a tie plate of $60 \times 8 \mathrm{~mm}$ to a 12 mm thick gusset plate. The plate is subjected to load equal to full strength of the member. Assume shop welding and Fe 410.
(ANS: $A_{g}=480 \mathrm{~mm}^{2}, \mathrm{P}=109.09 \mathrm{kN}, \mathrm{S}=4 \mathrm{~mm}, \mathrm{fwd}=189 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{lw}=$ 206.14 mm , End return $=8 \mathrm{~mm}$)

Ex.5. A tie plate of $75 \times 8 \mathrm{~mm}$ is connected to the gusset plate to transmit a factored load of 120 kN . Determine the size and length of the fillet weld. Assuming site weld, Fe 410 steel and E 41 electrode.
(ANS: $\mathrm{S}=3 \mathrm{~mm}, \mathrm{fwd}=158 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{lw}=362 \mathrm{~mm}$, End return $=6 \mathrm{~mm}$)

Ex.6. An ISA: $125 \times 75 \times 8 \mathrm{~mm}$ is to be connected with 8 mm thick gusset plate with its longer leg connected by 4 mm size weld to transfer an axial pull of 120 kN. Design the weld connection. Assume steel grade Fe 410.
(ANS: fwd $=189 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{P} 1=39.84 \mathrm{kN}, \mathrm{P} 2=80.16 \mathrm{kN}, \mathrm{lw} 1=75.28 \mathrm{~mm}, \mathrm{lw} 2$ $=151.47 \mathrm{~mm}$, End return $=8 \mathrm{~mm}, \mathrm{tt}=2.8 \mathrm{~mm}$)

ASSIGNMENT-3 TENSION MEMBER

Ex.1. A single unequal angle ISA: $100 \times 75 \times 6 \mathrm{~mm}$ is connected to a 10 mm thick gusset plate with 6 nos. of 16 mm diameter bolts to transfer force. Determine the design tensile strength of the angle assuming longer leg is connected to the gusset plate. Take: $\mathrm{fu}=410 \mathrm{MPa}, \mathrm{fy}=250 \mathrm{MPa}$.
(ANS: $\mathrm{d}=16 \mathrm{~mm}, \mathrm{dh}=18 \mathrm{~mm}, \mathrm{~g}=60 \mathrm{~mm}, \mathrm{e}=40 \mathrm{~mm}, \mathrm{p}=40 \mathrm{~mm}, \mathrm{Ag}=$ $1014 \mathrm{~mm}^{2}, \mathrm{Tdg}=230.45 \mathrm{kN}, \beta=1.026, \mathrm{w}=75 \mathrm{~mm}, \mathrm{bs}=129 \mathrm{~mm}, \mathrm{Lc}=200$ $\mathrm{mm}, ~ \mathrm{mo}=1.10, \mathrm{pm} 1=1.25, \mathrm{Anc}=474 \mathrm{~mm}^{2}, \mathrm{Ago}=432 \mathrm{~mm}^{2}, \mathrm{Tdn}=240.66$ $\mathrm{kN}, \operatorname{Avg}=1440 \mathrm{~mm}^{2}, \operatorname{Avn}=846 \mathrm{~mm}^{2}, \operatorname{Atg}=240 \mathrm{~mm}^{2}$, Atn $=186 \mathrm{~mm}^{2}$, Tdb1 $=243.86 \mathrm{kN}, \mathrm{Tdb} 2=198.73 \mathrm{kN}, \mathrm{Tdb}=198.73 \mathrm{kN}, \mathrm{Td}=198.73 \mathrm{kN}, \eta=$ 86.23\%)

Ex.2. A single unequal angle ISA: $100 \times 75 \times 6 \mathrm{~mm}$ is connected to a 10 mm thick gusset plate with 6 nos. of 16 mm diameter bolts to transfer force. Determine the design tensile strength of the angle assuming shorter leg is connected to the gusset plate. Take: $\mathrm{fu}=410 \mathrm{MPa}, \mathrm{fy}=250 \mathrm{MPa}$.
(ANS: $\mathrm{d}=16 \mathrm{~mm}, \mathrm{dh}=18 \mathrm{~mm}, \mathrm{~g}=60 \mathrm{~mm}, \mathrm{e}=40 \mathrm{~mm}, \mathrm{p}=40 \mathrm{~mm}, \mathrm{Ag}=$ $1014 \mathrm{~mm}^{2}, \mathrm{Tdg}=230.45 \mathrm{kN}, \beta=0.882, \mathrm{w}=100 \mathrm{~mm}, \mathrm{bs}=134 \mathrm{~mm}, \mathrm{Lc}=200$ $\mathrm{mm}, ~ \gamma \mathrm{mo}=1.10, ~ \mathrm{~mm} 1=1.25, \mathrm{Anc}=324 \mathrm{~mm}^{2}, \mathrm{Ago}=582 \mathrm{~mm}^{2}, \mathrm{Tdn}=212.31$ $\mathrm{kN}, \operatorname{Avg}=1440 \mathrm{~mm}^{2}, \operatorname{Avn}=846 \mathrm{~mm}^{2}, \operatorname{Atg}=210 \mathrm{~mm}^{2}$, Atn $=156 \mathrm{~mm}^{2}$, Tdb1 $=235 \mathrm{kN}, \mathrm{Tdb} 2=191.91 \mathrm{kN}, \mathrm{Tdb}=191.91 \mathrm{kN}, \mathrm{Td}=191.91 \mathrm{kN})$

Ex.3. Design a tension member of single unequal angle section to carry tensile load of 210 kN . Assuming a single row of M 20 bolts and Take: fu = 410 $\mathrm{MPa}, \mathrm{fy}=250 \mathrm{MPa}$.
(ANS: Ag-req $=924 \mathrm{~mm}^{2}$, Ag-pro $=976 \mathrm{~mm}^{2}$, ISA: $65 \mathrm{~mm} \times 65 \mathrm{~mm} \times 8 \mathrm{~mm}$, Tdg $=221.82 \mathrm{kN}, \beta=1.227, \mathrm{~d}=20 \mathrm{~mm}, \mathrm{dh}=22 \mathrm{~mm}, \mathrm{p}=50 \mathrm{~mm}, \mathrm{e}=40 \mathrm{~mm}$, No. of bolts $=5, \mathrm{~g}=35 \mathrm{~mm}, \mathrm{w}=65 \mathrm{~mm}, \mathrm{bs}=92 \mathrm{~mm}, \mathrm{Lc}=200 \mathrm{~mm}, \gamma \mathrm{mo}=$ 1.10, $\mathrm{pm1}=1.25, \mathrm{Anc}=312 \mathrm{~mm}^{2}, \mathrm{Ago}=488 \mathrm{~mm}^{2}, \mathrm{Tdn}=228.18 \mathrm{kN}, \mathrm{Avg}=$ $1920 \mathrm{~mm}^{2}$, Avn $=1128 \mathrm{~mm}^{2}, \operatorname{Atg}=240 \mathrm{~mm}^{2}$, Atn $=152 \mathrm{~mm}^{2}, \mathrm{Tdb} 1=296.80$ $\mathrm{kN}, \mathrm{Tdb} 2=246.80 \mathrm{kN}, \mathrm{Tdb}=246.80 \mathrm{kN}, \mathrm{Td}=221.82 \mathrm{kN}$)

Ex. 4 Design a tension member of two unequal angle sections on both side of gusset plate to carry tensile load of 300 kN . Assuming a single row of M 20 bolts and Take: $\mathrm{fu}=410 \mathrm{MPa}, \mathrm{fy}=250 \mathrm{MPa}$.
(ANS: Ag-req $=1320 \mathrm{~mm}^{2}$, Ag-pro $=1432 \mathrm{~mm}^{2}$, ISA: $75 \mathrm{~mm} \times 50 \mathrm{~mm} \times 6$ $\mathrm{mm}, \mathrm{Tdg}=325.45 \mathrm{kN}, \beta=1.184, \mathrm{~d}=20 \mathrm{~mm}, \mathrm{dh}=22 \mathrm{~mm}, \mathrm{p}=50 \mathrm{~mm}, \mathrm{e}=40$ mm, No. of bolts $=4, g=40 \mathrm{~mm}, \mathrm{w}=50 \mathrm{~mm}, \mathrm{bs}=84 \mathrm{~mm}, \mathrm{Lc}=150 \mathrm{~mm}, \gamma \mathrm{mo}$ $=1.10, \mathrm{ym} 1=1.25, \mathrm{Anc}=300 \mathrm{~mm}^{2}, \mathrm{Ago}=282 \mathrm{~mm}^{2}, \mathrm{Tdn}=328.88 \mathrm{kN}, \mathrm{Avg}=$ $1140 \mathrm{~mm}^{2}, \operatorname{Avn}=678 \mathrm{~mm}^{2}, \operatorname{Atg}=210 \mathrm{~mm}^{2}, \operatorname{Atn}=144 \mathrm{~mm}^{2}, \mathrm{Tdb1}=192.09$ $\mathrm{kN}, \mathrm{Tdb} 2=163.28 \mathrm{kN}, \mathrm{Tdb}=326.56 \mathrm{kN}, \mathrm{Td}=326.56 \mathrm{kN}$)

ASSIGNMENT-4 COMPRESSION MEMBER

Ex.1. Determine the compressive strength of a single ISA: $100 \times 100 \times 8 \mathrm{~mm}$ @ $12.1 \mathrm{~kg} / \mathrm{m}$ with the length of member 2.5 m . The ends of the member are hinged. Assume that the load is applied concentrically to the angle. Take fy $=250 \mathrm{MPa}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(ANS: $\mathrm{A}=1539 \mathrm{~mm}^{2}$, Aeff $=1539 \mathrm{~mm}^{2}, \mathrm{r}_{\text {min }}=19.5 \mathrm{~mm}$, Semi compact section, $\mathrm{L}_{\mathrm{e}}=2500 \mathrm{~mm}, \mathrm{~K}=1, \varepsilon=1, \mathrm{fcc}=120.09 \mathrm{~N} / \mathrm{mm}^{2}, \lambda=1.44, \phi=$ 1.8406, $\alpha=0.49$, Buckling class $-c, \chi=$ stress reduction factor $=0.335, \gamma \mathrm{mo}=$ $1.10, \mathrm{fcd}=76.13 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Pd}=117.16 \mathrm{kN}$)

Ex.2. Calculate the compressive strength of a single angle strut ISA: $100 \times 75 \times 10$ mm with centre to centre length of 1.5 m . Angle is loaded through one leg and ends are fixed. Consider 1 bolt at each end. Take fy $=250 \mathrm{MPa}$ and $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(ANS: $A=1650 \mathrm{~mm}^{2}$, Aeff $=1650 \mathrm{~mm}^{2}, \mathrm{r}_{\text {min }}=15.8 \mathrm{~mm}$, Semi compact section, $\mathrm{L}_{\mathrm{e}}=2500 \mathrm{~mm}, \varepsilon=1, \mathrm{~b}=75 \mathrm{~mm}, \mathrm{~d}=100 \mathrm{~mm}, \mathrm{t}=10 \mathrm{~mm}, \mathrm{~b} 1=100$ $\mathrm{mm}, \mathrm{b} 2=75, \lambda_{\mathrm{vv}}=1.07, \lambda_{\phi}=0.098, \mathrm{k} 1=0.75, \mathrm{k} 2=0.35, \mathrm{k} 3=20, \mathrm{~L}=1500$ $\mathrm{mm}, \lambda_{\mathrm{e}}=1.16, \alpha=0.49$, Buckling class-c, $\phi=1.41, \chi=$ stress reduction factor $=0.45, \mathrm{ymo}=1.10, \mathrm{fcd}=102.27 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Pd}=168.75 \mathrm{kN}$)

Ex.3. Design a single angle discontinuous strut to carry a factored load of 65 kN . Assume that the distance between its joint is 2.5 m . Use fy $=250 \mathrm{MPa}$ and E $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Assume 2 bolts at each end and fixed condition. Slenderness ratio $=120$.
(ANS: $\mathrm{P}=65 \mathrm{kN}, \mathrm{fcd}=83.7 \mathrm{~N} / \mathrm{mm}^{2}$, Ag-req $=777 \mathrm{~mm}^{2}$, Ag-pro $=866 \mathrm{~mm}^{2}$, ISA: $75 \times 75 \times 6 \mathrm{~mm}$, Aeff $=866 \mathrm{~mm}^{2}, r_{\text {min }}=14.6 \mathrm{~mm}$, Semi compact section, $\mathrm{L}_{\mathrm{e}}=2500 \mathrm{~mm}, \varepsilon=1, \mathrm{~b}=75 \mathrm{~mm}, \mathrm{~d}=75 \mathrm{~mm}, \mathrm{t}=6 \mathrm{~mm}, \mathrm{~b} 1=75 \mathrm{~mm}, \mathrm{~b} 2=75$, $\lambda_{\mathrm{vv}}=1.926, \lambda_{\phi}=0.1406, \mathrm{k} 1=0.20, \mathrm{k} 2=0.35, \mathrm{k} 3=20, \mathrm{~L}=2500 \mathrm{~mm}, \lambda_{\mathrm{e}}=$ 1.376, $\alpha=0.49$, Buckling class-c, $\phi=1.735, \chi=$ stress reduction factor $=$ $0.358, \gamma \mathrm{mo}=1.10, \mathrm{fcd}=81.36 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{Pd}=70.46 \mathrm{kN}$)

Ex.4. An ISHB $300 @ 588 \mathrm{~N} / \mathrm{m}$ is to be used as a short column. Determine its compressive strength. Assume Fe 410 steel, fy $=250 \mathrm{MPa}$.
(ANS: $A=7480 \mathrm{~mm}^{2}, \mathrm{bf}=250 \mathrm{~mm}, \mathrm{~b}=125 \mathrm{~mm}, \mathrm{tf}=10.6 \mathrm{~mm}, \mathrm{~h}=300 \mathrm{~mm}$, $\mathrm{tw}=7.6 \mathrm{~mm}, \mathrm{R}=$ root radius $=11 \mathrm{~mm}, \varepsilon=1$, Aeff $=7480 \mathrm{~mm}^{2}$, Semi compact section, $\mathrm{Pd}=1870 \mathrm{kN}$)

ASSIGNMENT-5 LACING \& BATTEN

Ex.1. Design a single lacing system for a column composed of two ISMC 300 @ $35.8 \mathrm{~kg} / \mathrm{m}$ is placed back to back at clear spacing of 200 mm . Axial factored load on column is 1500 kN . Effective length of column is 5 m . Assume angle of lacing is 45° and 16 mm diameter bolts.
(ANS: $\mathrm{g}=50 \mathrm{~mm}, \mathrm{r}_{\text {min }}=26.1 \mathrm{~mm}, \mathrm{r}_{\mathrm{zz}}=118.1 \mathrm{~mm}, \mathrm{r}_{\mathrm{yy}}=126.3 \mathrm{~mm}, \mathrm{~s}=200$ mm, Lo $=600 \mathrm{~mm}, \mathrm{~K}=1$, Leff $=424.26 \mathrm{~mm}, \mathrm{~b}=50 \mathrm{~mm}, \mathrm{~d}=16 \mathrm{~mm}, \mathrm{t}=12$ $\mathrm{mm}, \mathrm{l}=7200 \mathrm{~mm}^{4}, \mathrm{~A}=600 \mathrm{~mm}^{2}, \mathrm{r}_{\text {min-lacing }}=3.464 \mathrm{~mm}, \mathrm{fcd}=81.38 \mathrm{~N} / \mathrm{mm}^{2}$, $\mathrm{Pd}=48.83 \mathrm{kN}, \mathrm{Vt}=37.5 \mathrm{kN}, \mathrm{F}=26.52 \mathrm{kN}, \mathrm{Td}=113.35 \mathrm{kN}$, Bolt value $=58$ kN, No. of bolt = 1, Tie plate: $380 \mathrm{~mm} \times 310 \mathrm{~mm} \times 6 \mathrm{~mm}$, Lacing bar: 50 mm $\times 12 \mathrm{~mm}$)

Ex.2. Design battening system for a built up column of two ISLC 250 spaced at 140 mm back to back. The column is carrying factored axial load of 1200 kN . Its length is 6 m . Both ends of column are effectively held in position and restrained against rotation.
(ANS: $\mathrm{K}=0.65, \mathrm{r}_{\mathrm{zz}}=101.7 \mathrm{~mm}, \mathrm{r}_{\mathrm{yy}}=101.2 \mathrm{~mm}, \mathrm{~s}=140 \mathrm{~mm}, \mathrm{r}_{\text {min }}=28.9 \mathrm{~mm}$, $\mathrm{C}=850 \mathrm{~mm}, \mathrm{t}=6 \mathrm{~mm}, \mathrm{Lb}=260 \mathrm{~mm}, \mathrm{~g}=60 \mathrm{~mm}, \mathrm{Cyy}=27 \mathrm{~mm}, \mathrm{a}=194 \mathrm{~mm}$, $b=100 \mathrm{~mm}, \mathrm{~d}=200 \mathrm{~mm}, \mathrm{D}_{\text {batten }}=280 \mathrm{~mm}, \mathrm{~L}_{\text {batten }}=340 \mathrm{~mm}$, Batten size: $340 \mathrm{~mm} \times 280 \mathrm{~mm} \times 6 \mathrm{~mm}, \mathrm{Vt}=30 \mathrm{kN}, \mathrm{N}=2, \mathrm{~S}=260 \mathrm{~mm}, \mathrm{Vb}=49.03 \mathrm{kN}, \mathrm{M}$ $=6375 \mathrm{kN} . \mathrm{mm}, \gamma \mathrm{mo}=1.10$, Actual bending stress $=81.31 \mathrm{~N} / \mathrm{mm}^{2}$, Permissible bending stress $=227.27 \mathrm{~N} / \mathrm{mm}^{2}$)

ASSIGNMENT-6 BEAM \& PURLIN

EX.1. Design a simply supported beam of span 6 m carrying working loads of $\mathrm{DL}=$ $15 \mathrm{kN} / \mathrm{m}$ and $\mathrm{LL}=10 \mathrm{kN} / \mathrm{m}$. Assume that the compression flange of the beam is laterally restrained.
(ANS: Total load $=\mathrm{w}=37.5 \mathrm{kN} / \mathrm{m}, \mathrm{L}=6 \mathrm{~m}, \mathrm{M}_{\mathrm{uz}}=168.75 \mathrm{kN} . \mathrm{m}, \mathrm{V}_{\mathrm{uy}}=112.5$ $\mathrm{kN}, \mathrm{Z}_{\mathrm{p} \text {-eq }}=742.5 \mathrm{~cm}^{3}, \mathrm{Z}_{\mathrm{p} \text {-pro }}=889.57 \mathrm{~cm}^{3}$, ISMB $350 @ 0.524 \mathrm{kN} / \mathrm{m}, \varepsilon=1$, Section is plastic, Total factored udl $=38.286 \mathrm{kN} / \mathrm{m}, \mathrm{Vd}=372 \mathrm{kN}, \mathrm{Md}=$ $202.17 \mathrm{kN} . \mathrm{m}, \gamma \mathrm{mo}=1.10, \beta_{\mathrm{b}}=1$, $\mathrm{bo}=140 \mathrm{~mm}$, $\mathrm{Lo}=6000 \mathrm{~mm}$, Actual deflection $=6.20 \mathrm{~mm}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=136 \times 10^{6} \mathrm{~mm}^{4}$, Max. deflection $=20 \mathrm{~mm}$)

Ex.2. Design an angle section for a purlin having 3 m span. It carries design load (working) of $2.5 \mathrm{kN} / \mathrm{m}$ and supported on four supports. Angle of roof truss is 26°. Take fy $=250 \mathrm{MPa}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(ANS: $\mathrm{Mz}=2.25 \mathrm{kN} . \mathrm{m}, \mathrm{Z}_{\mathrm{ez} \text {-req }}=9 \mathrm{~cm}^{3}$, D -req $=66.67 \mathrm{~mm}, \mathrm{~B}$-req $=50 \mathrm{~mm}, \mathrm{D}-$ pro $=90 \mathrm{~mm}, \mathrm{~B}-\mathrm{pro}=60 \mathrm{~mm}, \mathrm{t}=8 \mathrm{~mm}$, Permissible deflection $=16.67 \mathrm{~mm}$, Actual deflection $=14.40 \mathrm{~mm}, \mathrm{I}_{\mathrm{z}}=91.5 \mathrm{~cm}^{4}, \mathrm{Z}_{\text {ez-pro }}=15.1 \mathrm{~cm}^{3}, \varepsilon=1$, section is semi compact, ISA: $90 \times 60 \times 8 \mathrm{~mm}$)

ASSIGNMENT-7 SLAB BASED FOUNDATION

EX.1. Design a slab base foundation for a column ISHB 350 to carry a factored axial load of 1200 kN . Assume Fe 410 grade steel and M 25 grade concrete. Take S.B.C. of soil as $200 \mathrm{kN} / \mathrm{m}^{2}$. Assume angle of dispersion is 45°.
(ANS: $\mathrm{h}=350 \mathrm{~mm}, \mathrm{bf}=250 \mathrm{~mm}, \mathrm{tf}=11.6 \mathrm{~mm}, \mathrm{tw}=8.3 \mathrm{~mm}, \mathrm{P}_{\mathrm{u}}=1200 \mathrm{kN}$, Ap-req $=80000 \mathrm{~mm}^{2}$, Bearing strength of concrete $=5 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~b}=350 \mathrm{~mm}$, $\mathrm{d}=\mathrm{bf}=250 \mathrm{~mm}$, Equal projection all around column $=50 \mathrm{~mm}, \mathrm{Bp}=450$ $\mathrm{mm}, \mathrm{Dp}=350 \mathrm{~mm}, \mathrm{a}=50 \mathrm{~mm}, \mathrm{~b}=50 \mathrm{~mm}, \mathrm{w}=7.62 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{ts}=12.11 \mathrm{~mm}$, provide 4 nos. of Anchor bolts of 16 mm diameter, Provide 6 mm fillet weld all around column, Projection beyond base plate $=0.85 \mathrm{~m}$, Concrete block size: $L=2.15 \mathrm{~m}, \mathrm{~B}=2.05 \mathrm{~m}, \mathrm{D}=0.85 \mathrm{~m}$)

